FCBF Python功能选择技术

时间:2018-08-02 17:57:33

标签: python feature-selection

我想使用来自github https://github.com/shiralkarprashant/FCBF的FCBF技术 我面临的问题是我正在使用Python 3,该模块是为python 2用户实现的。我收到以下错误消息,描述未定义名称“ xrange”,因为我在python3上工作 我认为通过xrange更改范围即可解决问题

from FCBF_module import FCBF, FCBFK, FCBFiP, get_i
from sklearn.datasets import load_digits
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
import time
from sklearn.grid_search import GridSearchCV
classifiers = [('DecisionTree', DecisionTreeClassifier(), {'max_depth' : [5, 10, 15]}), 
              ('LogisticRegression', LogisticRegression(), {'C' : [0.1, 1, 10]})]

n_features = dataCAD.shape[1]
npieces = get_i(n_features)

模块代码仅包含一个xrange事件,我尝试按范围对其进行更改,但不能解决问题:

# -*- coding: utf-8 -*-
import numpy as np

def count_vals(x):
    vals = np.unique(x)
    occ = np.zeros(shape = vals.shape)    
    for i in range(vals.size):
        occ[i] = np.sum(x == vals[i])
    return occ

def entropy(x):
    n = float(x.shape[0])
    ocurrence = count_vals(x)
    px = ocurrence / n
    return -1* np.sum(px*np.log2(px))

def symmetricalUncertain(x,y):
    n = float(y.shape[0])
    vals = np.unique(y)
    # Computing Entropy for the feature x. 
    Hx = entropy(x)
    # Computing Entropy for the feature y.
    Hy = entropy(y)
    #Computing Joint entropy between x and y.
    partial = np.zeros(shape = (vals.shape[0]))
    for i in range(vals.shape[0]):    
       partial[i] = entropy(x[y == vals[i]]) 

    partial[np.isnan(partial)==1] = 0      
    py = count_vals(y).astype(dtype = 'float64') / n
    Hxy = np.sum(py[py > 0]*partial) 
    IG = Hx-Hxy
    return 2*IG/(Hx+Hy)

def suGroup(x, n):
    m = x.shape[0]
    x = np.reshape(x, (n,m/n)).T
    m = x.shape[1]
    SU_matrix = np.zeros(shape = (m,m))
    for j in range(m-1):
        x2 = x[:,j+1::]
        y = x[:,j]
        temp = np.apply_along_axis(symmetricalUncertain, 0, x2, y)
        for k in range(temp.shape[0]):
            SU_matrix[j,j+1::] = temp
            SU_matrix[j+1::,j] = temp

    return 1/float(m-1)*np.sum(SU_matrix, axis = 1)

def isprime(a):
    return all(a % i for i in xrange(2, a))


"""
get
"""

def get_i(a):
    if isprime(a):
        a -= 1
    return filter(lambda x: a % x == 0, range(2,a))


"""
FCBF - Fast Correlation Based Filter

L. Yu and H. Liu. Feature Selection for High‐Dimensional Data: A Fast Correlation‐Based Filter Solution. 
In Proceedings of The Twentieth International Conference on Machine Leaning (ICML‐03), 856‐863.
Washington, D.C., August 21‐24, 2003.
"""

class FCBF:

    idx_sel = []


    def __init__(self, th = 0.01):
        '''
        Parameters
        ---------------
            th = The initial threshold 
        '''
        self.th = th


    def fit(self, x, y):
        '''
        This function executes FCBF algorithm and saves indexes 
        of selected features in self.idx_sel

        Parameters
        ---------------
            x = dataset  [NxM] 
            y = label    [Nx1]
        '''
        self.idx_sel = []
        """
        First Stage: Computing the SU for each feature with the response.
        """
        SU_vec = np.apply_along_axis(symmetricalUncertain, 0, x, y)
        SU_list = SU_vec[SU_vec > self.th]
        SU_list[::-1].sort()

        m = x[:,SU_vec > self.th].shape
        x_sorted = np.zeros(shape = m)

        for i in range(m[1]):
            ind = np.argmax(SU_vec)
            SU_vec[ind] = 0
            x_sorted[:,i] = x[:,ind].copy()
            self.idx_sel.append(ind)

        """
        Second Stage: Identify relationships between feature to remove redundancy.
        """
        j = 0
        while True:
            """
            Stopping Criteria:The search finishes
            """
            if j >= x_sorted.shape[1]: break
            y = x_sorted[:,j].copy()
            x_list = x_sorted[:,j+1:].copy()
            if x_list.shape[1] == 0: break


            SU_list_2 = SU_list[j+1:]
            SU_x = np.apply_along_axis(symmetricalUncertain, 0, 
                                       x_list, y)

            comp_SU = SU_x >= SU_list_2
            to_remove = np.where(comp_SU)[0] + j + 1 
            if to_remove.size > 0:
                x_sorted = np.delete(x_sorted, to_remove, axis = 1)
                SU_list = np.delete(SU_list, to_remove, axis = 0)
                to_remove.sort()
                for r in reversed(to_remove): 
                    self.idx_sel.remove(self.idx_sel[r])
            j = j + 1        

    def fit_transform(self, x, y):
        '''
        This function fits the feature selection 
        algorithm and returns the resulting subset.

        Parameters
        ---------------
            x = dataset  [NxM] 
            y = label    [Nx1]
        '''
        self.fit(x, y)
        return x[:,self.idx_sel]

    def transform(self, x):
        '''
        This function applies the selection
        to the vector x.

        Parameters
        ---------------
            x = dataset  [NxM] 
        '''
        return x[:, self.idx_sel]  


"""
FCBF# - Fast Correlation Based Filter 
B. Senliol, G. Gulgezen, et al. Fast Correlation Based Filter (FCBF) with a Different Search Strategy. 
In Computer and Information Sciences (ISCIS ‘08) 23rd International Symposium on, pages 1‐4. 
Istanbul, October 27‐29, 2008.
"""
class FCBFK(FCBF):

    idx_sel = []


    def __init__(self, k = 10):
        '''
        Parameters
        ---------------
            k = Number of features to include in the
            subset.
        '''
        self.k = k


    def fit(self, x, y):
        '''
        This function executes FCBFK algorithm and saves indexes 
        of selected features in self.idx_sel

        Parameters
        ---------------
            x = dataset  [NxM] 
            y = label    [Nx1]
        '''        
        self.idx_sel = []
        """
        First Stage: Computing the SU for each feature with the response.
        """    
        SU_vec = np.apply_along_axis(symmetricalUncertain, 0, x, y)

        SU_list = SU_vec[SU_vec > 0]
        SU_list[::-1].sort()

        m = x[:,SU_vec > 0].shape
        x_sorted = np.zeros(shape = m)

        for i in range(m[1]):
            ind = np.argmax(SU_vec)
            SU_vec[ind] = 0
            x_sorted[:,i] = x[:,ind].copy() 
            self.idx_sel.append(ind)

        """
        Second Stage: Identify relationships between features to remove redundancy with stopping 
        criteria (features in x_best == k).
        """    
        j = 0
        while True:
            y = x_sorted[:,j].copy()
            SU_list_2 = SU_list[j+1:]    
            x_list = x_sorted[:,j+1:].copy()

            """
            Stopping Criteria:The search finishes
            """
            if x_list.shape[1] == 0: break


            SU_x = np.apply_along_axis(symmetricalUncertain, 0, 
                                       x_list, y)

            comp_SU = SU_x >= SU_list_2
            to_remove = np.where(comp_SU)[0] + j + 1 
            if to_remove.size > 0 and x.shape[1] > self.k:

                for i in reversed(to_remove):

                    x_sorted = np.delete(x_sorted, i, axis = 1)
                    SU_list = np.delete(SU_list, i, axis = 0)                
                    self.idx_sel.remove(self.idx_sel[i])
                    if x_sorted.shape[1] == self.k: break  

            if x_list.shape[1] == 1 or x_sorted.shape[1] == self.k: 
                break    
            j = j + 1

        if len(self.idx_sel) > self.k:
            self.idx_sel = self.idx_sel[:self.k]



"""
FCBFiP - Fast Correlation Based Filter in Pieces
"""            

class FCBFiP(FCBF):

    idx_sel = []


    def __init__(self, k = 10, npieces = 2):
        '''
        Parameters
        ---------------
            k = Number of features to include in the
            subset.
            npieces = Number of pieces to divide the 
            feature space.
        '''
        self.k = k
        self.npieces = npieces

    def fit(self, x, y):
        '''
        This function executes FCBF algorithm and saves indexes 
        of selected features in self.idx_sel

        Parameters
        ---------------
            x = dataset  [NxM] 
            y = label    [Nx1]
        '''

        """
        First Stage: Computing the SU for each feature with the response. We sort the 
        features. When we have a prime number of features we remove the last one from the
        sorted features list.
        """      
        m = x.shape
        nfeaturesPieces = int(m[1] / float(self.npieces))        
        SU_vec = np.apply_along_axis(symmetricalUncertain, 0, x, y)

        x_sorted = np.zeros(shape = m, dtype = 'float64')        
        idx_sorted = np.zeros(shape = m[1], dtype = 'int64')
        for i in range(m[1]):
            ind = np.argmax(SU_vec)
            SU_vec[ind] = -1
            idx_sorted[i]= ind 
            x_sorted[:,i] = x[:,ind].copy() 

        if isprime(m[1]): 
            x_sorted = np.delete(x_sorted, m[1]-1, axis = 1 )
            ind_prime = idx_sorted[m[1]-1]
            idx_sorted = np.delete(idx_sorted, m[1]-1)
            #m = x_sorted.shape
        """
        Second Stage: Identify relationships between features into its vecinity
        to remove redundancy with stopping criteria (features in x_best == k).
        """   

        x_2d = np.reshape(x_sorted.T, (self.npieces, nfeaturesPieces*m[0])).T

        SU_x =  np.apply_along_axis(suGroup, 0, x_2d, nfeaturesPieces)
        SU_x = np.reshape(SU_x.T, (self.npieces*nfeaturesPieces,))
        idx_sorted2 = np.zeros(shape = idx_sorted.shape, dtype = 'int64')
        SU_x[np.isnan(SU_x)] = 1        

        for i in range(idx_sorted.shape[0]):
            ind =  np.argmin(SU_x)
            idx_sorted2[i] = idx_sorted[ind]
            SU_x[ind] = 10    

        """
        Scoring step
        """        
        self.scores = np.zeros(shape = m[1], dtype = 'int64') 

        for i in range(m[1]):
            if i in idx_sorted:
                self.scores[i] = np.argwhere(i == idx_sorted) + np.argwhere(i == idx_sorted2)
        if isprime(m[1]): 
            self.scores[ind_prime] = 2*m[1]
        self.set_k(self.k)


    def set_k(self, k):
        self.k = k 
        scores_temp = -1*self.scores

        self.idx_sel = np.zeros(shape = self.k, dtype = 'int64')
        for i in range(self.k):
            ind =  np.argmax(scores_temp)
            scores_temp[ind] = -100000000
            self.idx_sel[i] = ind

1 个答案:

答案 0 :(得分:0)

尝试使用适用于python的2to3软件包自动转换文件。为我工作!

https://docs.python.org/2/library/2to3.html