我有一个简单的模型:
models.py
class Ping(models.Model):
online = models.BooleanField()
created = models.DateTimeField(db_index=True, default=timezone.now)
def __str__(self):
return f'{self.online}, {self.created}'
它给我以下结果:
mysql [lab]> SELECT * FROM myapp_ping;
+----+--------+----------------------------+
| id | online | created |
+----+--------+----------------------------+
| 1 | 1 | 2018-08-02 13:34:09.435292 |
| 2 | 1 | 2018-08-02 13:35:09.520200 |
| 3 | 0 | 2018-08-02 13:36:09.540638 |
| 4 | 0 | 2018-08-02 13:37:10.529783 |
| 5 | 1 | 2018-08-02 13:38:09.779012 |
| 6 | 1 | 2018-08-02 13:39:09.650365 |
| 7 | 1 | 2018-08-02 13:40:09.625543 |
| 8 | 1 | 2018-08-02 13:41:09.892196 |
| 9 | 1 | 2018-08-02 13:42:09.802186 |
| 10 | 1 | 2018-08-02 13:43:09.864551 |
| 11 | 1 | 2018-08-02 13:44:09.960962 |
| 12 | 1 | 2018-08-02 13:45:09.891947 |
| 13 | 0 | 2018-08-02 13:46:09.141727 |
| 14 | 0 | 2018-08-02 13:47:09.142030 |
| 15 | 0 | 2018-08-02 13:48:09.160942 |
| 16 | 0 | 2018-08-02 13:49:09.152879 |
| 17 | 0 | 2018-08-02 13:50:09.280246 |
| 18 | 1 | 2018-08-02 13:51:09.363184 |
| 19 | 1 | 2018-08-02 13:52:09.405863 |
| 20 | 1 | 2018-08-02 13:53:09.403251 |
+----+--------+----------------------------+
20 rows in set (0.00 sec)
有没有办法获得与此类似的输出(online
为假的范围):
停机时间:
from | to | duration
2018-08-02 13:36:09 | 2018-08-02 13:37:10 | 1 minute and 1 second
2018-08-02 13:46:09 | 2018-08-02 13:50:09 | 4 minutes and 0 seconds
我不确定是否可以使用Django ORM完成此操作,还是需要使用原始的MySQL查询来使用类似CASE
或IF
的语句?
更新:UTC 2018年8月8日星期三15:13:15
因此,我从@AKX answer获得了两种解决方案的概念证明:
models.py
class PingManager(models.Manager):
def downtime_python(self):
queryset = super().get_queryset().filter(created__gt=timezone.now() - timezone.timedelta(days=30))
offline = False
ret = []
for entry in queryset:
if not entry.online and not offline:
offline = True
_ret = {'start': str(entry.created)}
if entry.online and offline:
_ret.update({'end': str(entry.created)})
ret.append(_ret)
offline = False
return ret
def downtime_sql(self):
queryset = super().get_queryset().filter(created__gt=timezone.now() - timezone.timedelta(days=30))
offline = queryset.filter(online=False).order_by('created').first()
last = queryset.order_by('created').last()
ret = []
if offline:
online = queryset.filter(created__gt=offline.created, online=True).order_by('created').first()
ret.append({'start': str(offline.created), 'end': str(online.created)})
while True:
offline = queryset.filter(created__gt=online.created, online=False).order_by('created').first()
if offline:
online = queryset.filter(created__gt=offline.created, online=True).order_by('created').first()
if (online and offline) and online.created < last.created:
ret.append({'start': str(offline.created), 'end': str(online.created)})
continue
else:
break
return ret
class Ping(models.Model):
online = models.BooleanField()
created = models.DateTimeField(db_index=True, default=timezone.now)
objects = PingManager()
def __str__(self):
return f'{self.online}, {self.created}'
问题:
我应该为此创建静态方法还是自定义manger
是这里的正确解决方案?
如果两个计算都在内存中运行,为什么执行时间之间会有如此大的差异?有没有一种方法可以改进它并使其与python等效的方法更像pythonic?
测试:
# python manage.py shell
Python 3.6.5 (default, Apr 10 2018, 17:08:37)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.
In [1]: from myapp.models import Ping
In [2]: Ping.objects.downtime_sql()[0]
Out[2]:
{'start': '2018-07-13 16:32:16.009356+00:00',
'end': '2018-07-13 16:33:15.942784+00:00'}
In [3]: Ping.objects.downtime_python()[0]
Out[3]:
{'start': '2018-07-13 16:32:16.009356+00:00',
'end': '2018-07-13 16:33:15.942784+00:00'}
In [4]: Ping.objects.downtime_sql() == Ping.objects.downtime_python()
Out[4]: True
In [5]: import timeit
In [6]: timeit.timeit(stmt=Ping.objects.downtime_python, number=1)
Out[6]: 5.720254830084741
In [7]: timeit.timeit(stmt=Ping.objects.downtime_sql, number=1)
Out[7]: 0.25946347787976265
答案 0 :(得分:4)
展开我的评论:
我不确定即使SQL case / if语句也可以得到该结果,因为结果行取决于先前的行。不过,这很容易在Python中按程序进行。
Ping.objects.all()
(或Ping.objects.iterator()
)并跟踪online
变量以形成所需的“条纹”。这样做的缺点是您确实需要遍历每个对象,这最终会很慢(和/或耗尽您的内存)。Ping
对象,然后找到下一个(按时间顺序)Ping
对象在线-这将形成一个连胜。然后冲洗并重复此操作,直到用完Ping
个对象以进行检查为止。是的,这是方法2(在https://github.com/akx/so51656477中找到完整的测试存储库)的(具体来说很优雅,如果您不介意我说的话):
class PingQuerySet(models.QuerySet):
def streaks(self):
queryset = self.values_list('created', 'online').order_by('created')
entry = queryset.first()
while entry:
next_entry = queryset.filter(created__gt=entry[0], online=(not entry[1])).first()
yield (entry, next_entry)
entry = next_entry
它是2个元组的元组的生成器:((start_timestamp, start_online), (end_timestamp, end_online) | None)
。
例如,要获取最近10天的向上/向下或向下/向上对,
for start, end in Ping.objects.filter(created__gt=now() - timedelta(days=10)).streaks():
print(start, end)
将打印类似
[...snip...]
(datetime.datetime(2018, 8, 8, 8, 10, 12, 943500), False) (datetime.datetime(2018, 8, 8, 10, 10, 12, 943500), True)
(datetime.datetime(2018, 8, 8, 10, 10, 12, 943500), True) (datetime.datetime(2018, 8, 8, 11, 10, 12, 943500), False)
(datetime.datetime(2018, 8, 8, 11, 10, 12, 943500), False) (datetime.datetime(2018, 8, 8, 11, 40, 12, 943500), True)
(datetime.datetime(2018, 8, 8, 11, 40, 12, 943500), True) (datetime.datetime(2018, 8, 8, 12, 40, 12, 943500), False)
(datetime.datetime(2018, 8, 8, 12, 40, 12, 943500), False) (datetime.datetime(2018, 8, 8, 16, 40, 12, 943500), True)
(datetime.datetime(2018, 8, 8, 16, 40, 12, 943500), True) (datetime.datetime(2018, 8, 8, 17, 40, 12, 943500), False)
(datetime.datetime(2018, 8, 8, 17, 40, 12, 943500), False) (datetime.datetime(2018, 8, 8, 18, 10, 12, 943500), True)
(datetime.datetime(2018, 8, 8, 18, 10, 12, 943500), True) (datetime.datetime(2018, 8, 8, 19, 40, 12, 943500), False)
(datetime.datetime(2018, 8, 8, 19, 40, 12, 943500), False) (datetime.datetime(2018, 8, 8, 23, 10, 12, 943500), True)
(datetime.datetime(2018, 8, 8, 23, 10, 12, 943500), True) (datetime.datetime(2018, 8, 9, 0, 10, 12, 943500), False)
(datetime.datetime(2018, 8, 9, 0, 10, 12, 943500), False) (datetime.datetime(2018, 8, 9, 3, 10, 12, 943500), True)
(datetime.datetime(2018, 8, 9, 3, 10, 12, 943500), True) (datetime.datetime(2018, 8, 9, 3, 40, 12, 943500), False)
(datetime.datetime(2018, 8, 9, 3, 40, 12, 943500), False) (datetime.datetime(2018, 8, 9, 5, 10, 12, 943500), True)
(datetime.datetime(2018, 8, 9, 5, 10, 12, 943500), True) (datetime.datetime(2018, 8, 9, 5, 40, 12, 943500), False)
(datetime.datetime(2018, 8, 9, 5, 40, 12, 943500), False) (datetime.datetime(2018, 8, 9, 7, 10, 12, 943500), True)
(datetime.datetime(2018, 8, 9, 7, 10, 12, 943500), True) None
一些注意事项:
end
值可以是None
,这意味着机器仍处于运行或关闭状态(取决于start
元组的状态值)。start
元组的状态值为True
的配对。QuerySet
扩展方法,因此您可以根据需要添加其他过滤器(只要它们不对online
进行过滤)。例如,如果您有一个host
字段,则Ping.objects.filter(host='example.com').streaks()
。答案 1 :(得分:2)
您可以使用@classmethod
,然后以所需的方式格式化输出,这里有一个示例:
from dateutil.relativedelta import relativedelta
class Ping(models.Model):
online = models.BooleanField()
created = models.DateTimeField(db_index=True, default=timezone.now)
def __str__(self):
return f'{self.online}, {self.created}'
@classmethod
def ping_online_duration(cls, is_online):
first = cls.objects.filter(online=is_online).order_by('created').first()
last = cls.objects.filter(online=is_online).order_by('created').last()
return {
'from': first.created.strftime('%Y-%m-%d %H:%M:%S'),
'to': last.created.strftime('%Y-%m-%d %H:%M:%S'),
'duration': (f'{relativedelta(last.created, first.created).minutes} minutes '
f'{relativedelta(last.created, first.created).seconds} seconds.')
}
您可以这样称呼它:
对于在线组:
Ping.ping_online_duration(True)
{'from': '2018-08-02 15:02:19',
'to': '2018-08-02 15:03:02',
'duration': '0 minutes 43 seconds'}
对于离线组:
Ping.ping_online_duration(False)
{'from': '2018-08-02 15:02:27',
'to': '2018-08-02 15:03:01',
'duration': '0 minutes 34 seconds'}
正如我之前说的,您可以按照需要的方式格式化输出。