在熊猫列上应用MinMaxScaler()

时间:2018-08-01 22:19:21

标签: python-3.x pandas scikit-learn

我正在尝试使用sklearn MinMaxScaler重新缩放如下所示的python列:

scaler = MinMaxScaler()
y = scaler.fit(df['total_amount'])

但是出现以下错误:

Traceback (most recent call last):
  File "/Users/edamame/workspace/git/my-analysis/experiments/my_seq.py", line 54, in <module>
    y = scaler.fit(df['total_amount'])
  File "/Users/edamame/workspace/git/my-analysis/venv/lib/python3.4/site-packages/sklearn/preprocessing/data.py", line 308, in fit
    return self.partial_fit(X, y)
  File "/Users/edamame/workspace/git/my-analysis/venv/lib/python3.4/site-packages/sklearn/preprocessing/data.py", line 334, in partial_fit
    estimator=self, dtype=FLOAT_DTYPES)
  File "/Users/edamame/workspace/git/my-analysis/venv/lib/python3.4/site-packages/sklearn/utils/validation.py", line 441, in check_array
    "if it contains a single sample.".format(array))
ValueError: Expected 2D array, got 1D array instead:
array=[3.180000e+00 2.937450e+03 6.023850e+03 2.216292e+04 1.074589e+04
   :
 0.000000e+00 0.000000e+00 9.000000e+01 1.260000e+03].
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.

有什么想法吗?

2 个答案:

答案 0 :(得分:3)

MinMaxScaler的输入必须是类似shape [n_samples, n_features]的数组。因此,您可以将其作为 dataframe 而不是 series (使用双方括号而不是单个方括号)应用于列:

y = scaler.fit(df[['total_amount']])

通过您的描述,听起来您想fit_transform,而不只是fit(但我可能是错的):

y = scaler.fit_transform(df[['total_amount']])

更多说明:

如果您的数据框有100行,请在将列转换为数组时考虑形状的差异:

>>> np.array(df[['total_amount']]).shape
(100, 1)

>>> np.array(df['total_amount']).shape
(100,)

第一个返回与[n_samples, n_features]匹配的形状(MinMaxScaler要求),而第二个不匹配。

答案 1 :(得分:0)

尝试用这种方式:

import pandas as pd
from sklearn import preprocessing

x = df.values #returns a numpy array
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
df = pd.DataFrame(x_scaled)