我想转换为Df1以下至Df2。
空值将用Nan填充。
Dfs下面是示例。
我的数据从1到8周。
ID为100,000。只有第8周拥有所有ID,因此行总数将为100,000。
+)我的解释太糟糕了。这是更多说明。
我有一个具有100,000个ID的Df3,并且我想在格式化为df2的Df3上合并df1。
例如)pd.merge(df3,df1,on =“ id”,how =“ left”)->但格式为df2
Df1>
wk, id, col1, col2 ...
1 1 0.5 15
2 2 0.5 15
3 3 0.5 15
1 2 0.5 15
3 2 0.5 15
------
Df2>
wk1, id, col1, col2, wk2, id, col1, col2, wk3, id, col1, col2,...
1 1 0.5 15 2 1 Nan Nan 3 1 Nan Nan
1 2 0.5 15 2 2 0.5 15 3 2 0.5 15
1 3 Nan Nan 2 3 Nan Nan 3 3 0.5 15
答案 0 :(得分:1)
使用:
#create dictionary for rename columns for correct sorting
d = dict(enumerate(df.columns))
d1 = {v:k for k, v in d.items()}
#first add missing values for each `wk` and `id`
df1 = df.set_index(['wk', 'id']).unstack().stack(dropna=False).reset_index()
#for each id create DataFrame, reshape by unstask and rename columns
df1 = (df1.groupby('id')
.apply(lambda x: pd.DataFrame(x.values, columns=df.columns))
.unstack()
.reset_index(drop=True)
.rename(columns=d1, level=0)
.sort_index(axis=1, level=1)
.rename(columns=d, level=0))
#convert values to integers if necessary
df1.loc[:, ['wk', 'id']] = df1.loc[:, ['wk', 'id']].astype(int)
#flatten MultiIndex in columns
df1.columns = ['{}_{}'.format(a, b) for a, b in df1.columns]
print (df1)
wk_0 id_0 col1_0 col2_0 wk_1 id_1 col1_1 col2_1 wk_2 id_2 col1_2 \
0 1 1 0.5 15.0 2 1 NaN NaN 3 1 NaN
1 1 2 0.5 15.0 2 2 0.5 15.0 3 2 0.5
2 1 3 NaN NaN 2 3 NaN NaN 3 3 0.5
col2_2
0 NaN
1 15.0
2 15.0
答案 1 :(得分:1)
您可以使用GroupBy
+ concat
。这个想法是创建一个具有适当命名列和适当索引的数据框列表。沿着axis=1
的串联:
d = {k: v.reset_index(drop=True) for k, v in df.groupby('wk')}
def formatter(df, key):
return df.rename(columns={'w': f'wk{key}'}).set_index('id')
L = [formatter(df, key) for key, df in d.items()]
res = pd.concat(L, axis=1).reset_index()
print(res)
id wk col1 col2 wk col1 col2 wk col1 col2
0 1 1.0 0.5 15.0 NaN NaN NaN NaN NaN NaN
1 2 1.0 0.5 15.0 2.0 0.5 15.0 3.0 0.5 15.0
2 3 NaN NaN NaN NaN NaN NaN 3.0 0.5 15.0
注意NaN
会强制您的系列成为float
。没有“好的”解决方案。