我有一列的日期为字符串格式'2017-01-01'
。有没有办法使用熊猫从中提取日期和月份。
我已将列转换为datetime dtype
,但没有弄清楚后面的部分:
df['Date'] = pd.to_datetime(df['Date'], format='%Y-%m-%d')
df.dtypes :
Date datetime64[ns]
print (df)
Date
0 2017-05-11
1 2017-05-12
2 2017-05-13
答案 0 :(得分:5)
使用dt.day
和dt.month
--- Series.dt
df = pd.DataFrame({'date':pd.date_range(start='2017-01-01',periods=5)})
df.date.dt.month
Out[164]:
0 1
1 1
2 1
3 1
4 1
Name: date, dtype: int64
df.date.dt.day
Out[165]:
0 1
1 2
2 3
3 4
4 5
Name: date, dtype: int64
也可以使用dt.strftime
df.date.dt.strftime('%m')
Out[166]:
0 01
1 01
2 01
3 01
4 01
Name: date, dtype: object
答案 1 :(得分:2)
使用dt
获取列的datetime
属性。
In [60]: df = pd.DataFrame({'date': [datetime.datetime(2018,1,1),datetime.datetime(2018,1,2),datetime.datetime(2018,1,3),]})
In [61]: df
Out[61]:
date
0 2018-01-01
1 2018-01-02
2 2018-01-03
In [63]: df['day'] = df.date.dt.day
In [64]: df['month'] = df.date.dt.month
In [65]: df
Out[65]:
date day month
0 2018-01-01 1 1
1 2018-01-02 2 1
2 2018-01-03 3 1
对提供的方法进行计时:
使用apply
:
In [217]: %timeit(df['date'].apply(lambda d: d.day))
The slowest run took 33.66 times longer than the fastest. This could mean that an intermediate result is being cached.
1000 loops, best of 3: 210 µs per loop
使用dt.date
:
In [218]: %timeit(df.date.dt.day)
10000 loops, best of 3: 127 µs per loop
使用dt.strftime
:
In [219]: %timeit(df.date.dt.strftime('%d'))
The slowest run took 40.92 times longer than the fastest. This could mean that an intermediate result is being cached.
1000 loops, best of 3: 284 µs per loop
我们可以看到dt.day
是最快的
答案 2 :(得分:1)
这应该做到:
df['day'] = df['Date'].apply(lambda r:r.day)
df['month'] = df['Date'].apply(lambda r:r.month)
答案 3 :(得分:0)
一种简单的形式:
df['MM-DD'] = df['date'].dt.strftime('%m-%d')