我有一列以datetime.datetime
对象为内容。我正在尝试使用pyspark.sql.Window
功能,该功能需要数字类型,而不是日期时间或字符串。因此,我的计划是将datetime.datetime
对象转换为UNIX时间戳:
设置:
>>> import datetime; df = sqlContext.createDataFrame(
... [(datetime.datetime(2018, 1, 17, 19, 0, 15),),
... (datetime.datetime(2018, 1, 17, 19, 0, 16),)], ['dt'])
>>> df
DataFrame[dt: timestamp]
>>> df.dtypes
[('dt', 'timestamp')]
>>> df.show(5, False)
+---------------------+
|dt |
+---------------------+
|2018-01-17 19:00:15.0|
|2018-01-17 19:00:16.0|
+---------------------+
定义一个函数来访问timestamp
对象的datetime.datetime
函数:
def dt_to_timestamp():
def _dt_to_timestamp(dt):
return int(dt.timestamp() * 1000)
return func.udf(_dt_to_timestamp)
应用该功能:
>>> df = df.withColumn('dt_ts', dt_to_timestamp()(func.col('dt')))
>>> df.show(5, False)
+---------------------+-------------+
|dt |dt_ts |
+---------------------+-------------+
|2018-01-17 19:00:15.0|1516237215000|
|2018-01-17 19:00:16.0|1516237216000|
+---------------------+-------------+
>>> df.dtypes
[('dt', 'timestamp'), ('dt_ts', 'string')]
我不确定内部string
函数返回_dt_to_timestamp
时为什么此列默认为int
,但让我们尝试将这些“字符串整数”转换为{{1 }}:
IntegerType
这似乎只是>>> df = df.withColumn('dt_ts', func.col('dt_ts').cast(IntegerType()))
>>> df.show(5, False)
+---------------------+-----+
|dt |dt_ts|
+---------------------+-----+
|2018-01-17 19:00:15.0|null |
|2018-01-17 19:00:16.0|null |
+---------------------+-----+
>>> df.dtypes
[('dt', 'timestamp'), ('dt_ts', 'int')]
强制的问题。对于IntegerType
,转换有效,但我更喜欢整数...
DoubleType
答案 0 :(得分:1)
这是因为IntegerType
无法存储与您尝试转换的数字一样大的数字。请改用bigint/long
类型:
>>> df = df.withColumn('dt_ts', dt_to_timestamp()(func.col('dt')))
>>> df.show()
+--------------------+-------------+
| dt| dt_ts|
+--------------------+-------------+
|2018-01-17 19:00:...|1516237215000|
|2018-01-17 19:00:...|1516237216000|
+--------------------+-------------+
>>> df = df.withColumn('dt_ts', func.col('dt_ts').cast('long'))
>>> df.show()
+--------------------+-------------+
| dt| dt_ts|
+--------------------+-------------+
|2018-01-17 19:00:...|1516237215000|
|2018-01-17 19:00:...|1516237216000|
+--------------------+-------------+
>>> df.dtypes
[('dt', 'timestamp'), ('dt_ts', 'bigint')]