我需要一些概念,说明如何使用Python解析房地产市场。我搜索了一些有关解析网站的信息,甚至在VBA中进行了搜索,但是我想在python中进行。
这是一个将被解析的站点(仅是现在的一个要约,但是它将处理全部房地产要约,来自kontrakt.szczecin.pl的多个站点): http://www.kontrakt.szczecin.pl/mieszkanie-sprzedaz-100m2-335000pln-grudziadzka-pomorzany-szczecin-zachodniopomorskie,351149
首先,程序将使用3条信息:
1 / 信息所在的表(主要参数): Nuer oferty 351149,Liczba pokoi 3,Cena 335 000 PLN,Cena za m2 3 350 PLN(要约数量,房间编号,价格,按平方米计算的价格等)。但是,信息量取决于房地产报价:有时是14,有时是12,有时是16等。
2 / 段落中的属性描述(它是程序的另一部分,现在可以跳过):有时在表(1 /)中有关于有车库或阳台的信息。但是在段落中有一句话,车库是要收取额外的费用(对我来说这意味着物业没有车库)或阳台是法式的(对我而言这不是阳台)。 我设法让程序在段落(例如车库)中找到正确的单词,并从段落中复制文本,在左侧和右侧添加其他文本(例如:两侧均为20个字母,但是如果单词首先出现该怎么办?)
3 / 其他参数- 并非每个要约都有它,但像这样的一个http://www.kontrakt.szczecin.pl/mieszkanie-sprzedaz-6664m2-339600pln-potulicka-nowe-miasto-szczecin-zachodniopomorskie,351165,这里有关于物业阳台数量的信息。有时也有关于地下室的信息。该代码应类似于1 /问题。
因此,我使用一些互联网资源尝试了类似的方法(它仍然不完整):
from urllib.request import urlopen as uReq
from bs4 import BeautifulSoup as soup
my_url = "http://www.kontrakt.szczecin.pl/mieszkanie-sprzedaz-6664m2-339600pln-potulicka-nowe-miasto-szczecin-zachodniopomorskie,351165"
#PL: otwiera połączenie z wybraną stroną, pobieranie zawartości strony (urllib)
#EN: Opens a connection and grabs url
uClient = uReq(my_url)
page_html = uClient.read()
uClient.close()
#html parsing (BeautifulSoup)
page_soup = soup(page_html, "html.parser") #html.parser -> zapisujemy do html, nie np. do xml
#PL: zbiera tabelkę z numerami ofert, kuchnią i innymi danymi o nieruchomości z tabelki
#EN: grabs the data about real estate like kitchen, offer no, etc.
containers = page_soup.findAll("section",{"class":"clearfix"},{"id":"quick-summary"})
# print(len(containers)) - len(containers) sprawdza ile takich obiektów istnieje na stronie
#PL: Co prawda na stronie jest tylko jedna taka tabelka, ale dla dobra nauki zrobię tak jak gdyby tabelek było wiele.
#EN: There is only one table, but for the sake of knowledge I do the container variable
container = containers[0]
find_dt = container.findAll("dt")
find_dd = container.findAll("dd")
print(find_dt[0].text + " " + find_dd[0])
它可以工作,但是仍然不完整。我现在不继续,因为存在重大缺陷。如您所见,最后一个打印使用索引,但是并非每个属性都具有相同的顺序(因为正如我所提到的,有时会有10条信息,有时更多,有时更少)。 CSV将会变得一团糟。
我的VBA程序以这种方式工作:
也在概念和编码方面寻求帮助。
编辑: 第1部分和第2部分已准备就绪。但是我对第3部分有很大的疑问。这是代码:
from urllib import request as uReq
import requests
#dzięki temu program jest zamykany odrazu, i nie kontynuuje wykonywania reszty kodu. Po imporcie wystarczy exit(0)
from sys import exit
from urllib.request import urlopen as uReq2
from bs4 import BeautifulSoup as soup
import csv
import re
import itertools
filename = 'test.txt'
#licznik, potrzebny do obliczenia ilości numerów ofert w pliku .txt
num_lines = 0
# tworzymy listę danych i listę URLi. Wyniki będą dodawane do list, dlatego potrzeba jest ich utworzenia (jako puste)
list_of_lines = ['351238', '351237', '111111', '351353']
list_of_lines2 = []
list_of_URLs = []
list_of_redictered_URLs = []
KONTRAKT = 'http://www.kontrakt.szczecin.pl'
with open(filename, 'r') as file:
for line in file:
#dodajemy linię (ofertę) do listy
list_of_lines.append(line.strip())
#num_lines jest licznikiem, wskazuje ile wierszy zawiera lista, zmienna jest istotna w zakresię tworzenia pętli z adresami URL
num_lines += 1
#tworzymy URLe z Numerów Ofert zawartych w filename
for i in range(num_lines):
nr_oferty = list_of_lines[i]
my_url = "http://www.kontrakt.szczecin.pl/lista-ofert/?f_listingId=" + nr_oferty + "&f=&submit=Szukaj"
list_of_URLs.append(my_url)
print(list_of_URLs)
#Cześć druga: konwertowanie listy linków na listę linków przekierowanych
#Program wchodzi na stronę, która powinna być przekierowana, jednak ze względu na użyscie Java Scriptu,
#zadanie zostało utrudnione. Dlatego, też celem programu jest symulowanie przeglądarki, pobranie
#zawartości strony, a następnie 'wyłuskanie' odpowiedniego linku do przekierowania
i = 0
for i in range(num_lines):
url_redirect = list_of_URLs[i]
my_url = url_redirect
BROWSER = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36'}
response = requests.get(my_url, headers=BROWSER)
script1 = '<script>'
script2 = '</script>'
content_URL = str(response.content)
find_script1 = (content_URL.find(script1))
find_script2 = (content_URL.find(script2))
url_ready = content_URL[find_script1:find_script2]
print(i+1,'z', num_lines, '-', 'oferta nr:', str(my_url[57:57+6]))
list_of_redictered_URLs.append(url_ready)
#usuwanie zbędnych tagów i znaków, w celu uzyskania czystego przekierowanego linku
list_of_redictered_URLs = [w.replace('<script>window.location=\\\'','') for w in list_of_redictered_URLs]
list_of_redictered_URLs = [w.replace('\\\';','') for w in list_of_redictered_URLs]
#print(list_of_redictered_URLs)
#usuwanie pustych wierszy z listy (oferty, które są nieakutalne na liste "wchodzą jako puste" !!! item: jest to zmienna, można zamienić np. na janusz.
filtered_list = list(filter(lambda item: item.strip(), list_of_redictered_URLs))
filtered_list = [KONTRAKT + item for item in filtered_list]
#zmiana na tuple, ze względu iż mutowalność (dodawanie kolejnych linków) nie będzie potrzebne
filtered_list = tuple(filtered_list)
#print(str(filtered_list))
print('Lista linków:\n',filtered_list)
# Kolejną częścią programu jest pobieranie istotnych informacji (parametrów podstawowych)
# ze strony kontrakt.szczecin.pl, a następnie ich zapisanie w pliku csv.
# Nagłówki w csv oraz nazwy parametrów na stronie (muszą być identyczne jak na stronie, aby mogły
# zostać odpowiednio przyporządkowane w .csv)
HEADERS = ['Numer oferty',
'Liczba pokoi',
'Cena',
'Cena za m2',
'Powierzchnia',
'Piętro',
'Liczba pięter',
'Typ kuchni',
'Balkon',
'Czynsz administracyjny',
'Rodzaj ogrzewania',
'Umeblowanie',
'Wyposażona kuchnia',
'Gorąca woda',
'Rodzaj budynku',
'Materiał',
'Rok budowy',
'Stan nieruchomości',
'Rynek',
'Dach:',
'Liczba balkonów:',
'Liczba tarasów:',
'Piwnica:',
'Ogród:',
'Ochrona:',
'Garaż:',
'Winda:',
'Kształt działki:',
'Szerokość działki (mb.):',
'Długość działki (mb.):',
'Droga dojazdowa:',
'Gaz:',
'Prąd:',
'Siła:','piwnica',
'komórk',
'strych',
'gospodarcze',
'postojow',
'parking',
'przynależn',
'garaż',
'ogród',
'ogrod',
'działka',
'ocieplony',
'moderniz',
'restaur',
'odnow',
'ociepl',
'remon',
'elew',
'dozór',
'dozor',
'monitoring',
'monit',
'ochron',
'alarm',
'strzeż',
'portier',
'wspólnot',
'spółdziel',
'kuchni',
'aneks',
'widna',
'ciemna',
'prześwit',
'oficyn',
'linia',
'zabudow',
'opłat',
'bezczynsz',
'poziom',
'wind',
'francuski',
'ul.',
'w cenie',
'dodatkową']
LINKI = ["Link"]
#HEADERS2 = ['Liczba balkonów:',
# 'Liczba tarasów:',
# 'Piwnica:',
# 'Ogród:',
# 'Ochrona:',
# 'Garaż:',
# 'Winda:']
HEADERS3 = ['piwnica',
'komórk',
'strych',
'gospodarcze',
'postojow',
'parking',
'przynależn',
'garaż',
'ogród',
'ogrod',
'działka',
'ocieplony',
'moderniz',
'restaur',
'odnow',
'ociepl',
'remon',
'elew',
'dozór',
'dozor',
'monitoring',
'monit',
'ochron',
'alarm',
'strzeż',
'portier',
'wspólnot',
'spółdziel',
'kuchni',
'aneks',
'widna',
'ciemna',
'prześwit',
'oficyn',
'linia',
'zabudow',
'opłat',
'bezczynsz',
'poziom',
'wind',
'francuski',
'ul.',
'w cenie',
'dodatkową',]
csv_name = 'data.csv'
print('Dane zostaną zapisane do pliku:',csv_name + '.csv')
print('\n>>>>Program rozpoczyna pobieranie danych')
#Pobieranie linków
i = 0
#Tworzy plik csv o nazwie csv
#writerow może mieć tylko jeden argument, dlatego jest nim suma poszczególnych list. Lista
#linki ma jędną pozycję, ponieważ można sumować dane jednego typu. Nie można sumować listy ze stringami.
with open(csv_name + '.csv', 'w', newline='') as csvfile:
csvwriter = csv.writer(csvfile, delimiter=',', quotechar='"')
HEADERS_ALL = HEADERS+HEADERS3+LINKI
csvwriter.writerow(HEADERS_ALL)
for i in range(len(filtered_list)):
my_url = filtered_list[i]
with uReq2(my_url) as uClient:
page_soup = soup(uClient.read(), 'lxml')
print('\t\t-----------',i+1,'-----------\n',my_url)
#<dt> - nazwa parametru np. Kuchnia
#<dd> - wartość parametru np. widna
row = ['-'] * len(HEADERS) + ['-'] * len(HEADERS3) + ['-'] * len(LINKI)
# Parametry podstawowe (kontrakt.szczecin.pl)
for dt, dd in zip(page_soup.select('section#quick-summary dt'), page_soup.select('section#quick-summary dd')):
if dt.text.strip() not in HEADERS:
print("\n 1(dt,dd):UWAGA!, kolumna [{}] nie istnieje w nagłówkach! (stała: HEADERS)\n".format(dt.text.strip()))
continue
row[HEADERS.index(dt.text.strip())] = dd.text.strip()
# Parametry dodatkowe
for span, li in zip(page_soup.select('section#property-features span'), page_soup.select('section#property-features li')):
if span.text.strip() not in HEADERS:
print("\n 2:UWAGA(span,li), kolumna [{}] nie istnieje w nagłówkach (stała HEADERS)!\n".format(span.text.strip()))
continue
row[HEADERS.index(span.text.strip())] = li.text.strip()
#csvwriter.writerow(row)
print(row)
#No to zaczynamy zabawę...................................
# zmienna j odnosi się do indeksu HEADERS3, jest to j nie i, ponieważ i jest w dalszym użyciu
# w pętli powyżej
for p in page_soup.select('section#description'):
p = str(p)
p = p.lower()
for j in range(len(HEADERS3)):
#print('j:',j)
# find_p znajduje wszystkie słowa kluczowe z HEADERS3 w paragrafie na stronie kontraktu.
find_p = re.findall(HEADERS3[j],p)
# listy, które wyświetlają pozycję startową poszczególnych słów muszą zaczynać się od '-' lub 0?,
# ponieważ, gdy dane słowo nie zostanie odnalezione to listy będą puste w pierwszej iteracji pętli
# co w konsekewncji doprowadzi do błędu out of range
m_start = []
m_end = []
lista_j = []
for m in re.finditer(HEADERS3[j], p):
#print((m.start(),m.end()), m.group())
m_start.append(m.start())
m_end.append(m.end())
#print(h)
for k in range(len(m_start)):
#właściwe teraz nie wiem po co to jest..
try:
x = m_start[k]
y = m_end[k]
except IndexError:
x = m_start[0]
y = m_end[0]
#print('xy:',x,y)
#print(find_p)
#print(HEADERS3[j])
z = (HEADERS3[j]+':',p[-60+x:y+60]+' ++-NNN-++')
lista_j.append(z)
print (lista_j)
print(str(lista_j))
row[HEADERS.index(span.text.strip())] = str(lista_j)
csvwriter.writerow(row)
#print(row)
答案 0 :(得分:0)
此代码段将解析属性url的快速摘要表,并将其保存在csv文件中:
from urllib.request import urlopen as uReq
from bs4 import BeautifulSoup as soup
import csv
# my_url = 'http://www.kontrakt.szczecin.pl/mieszkanie-sprzedaz-6664m2-339600pln-potulicka-nowe-miasto-szczecin-zachodniopomorskie,351165'
my_url = 'http://www.kontrakt.szczecin.pl/mieszkanie-sprzedaz-100m2-335000pln-grudziadzka-pomorzany-szczecin-zachodniopomorskie,351149'
with uReq(my_url) as uClient:
page_soup = soup(uClient.read(), 'lxml')
with open('data.csv', 'w', newline='') as csvfile:
csvwriter = csv.writer(csvfile, delimiter=',', quotechar='"')
for dt, dd in zip(page_soup.select('section#quick-summary dt'), page_soup.select('section#quick-summary dd')):
csvwriter.writerow([dt.text.strip(), dd.text.strip()])
结果在data.csv
中,是我的LibreOffice的屏幕截图:
要转置表格,可以使用以下代码:
from urllib.request import urlopen as uReq
from bs4 import BeautifulSoup as soup
import csv
# my_url = 'http://www.kontrakt.szczecin.pl/mieszkanie-sprzedaz-6664m2-339600pln-potulicka-nowe-miasto-szczecin-zachodniopomorskie,351165'
my_url = 'http://www.kontrakt.szczecin.pl/mieszkanie-sprzedaz-100m2-335000pln-grudziadzka-pomorzany-szczecin-zachodniopomorskie,351149'
with uReq(my_url) as uClient:
page_soup = soup(uClient.read(), 'lxml')
headers = ['Numer oferty',
'Liczba pokoi',
'Cena',
'Cena za m2',
'Powierzchnia',
'Piętro',
'Liczba pięter',
'Typ kuchni',
'Balkon',
'Czynsz administracyjny',
'Rodzaj ogrzewania',
'Gorąca woda',
'Rodzaj budynku',
'Materiał',
'Rok budowy',
'Stan nieruchomości',
'Rynek',
'Dach:',
'Liczba balkonów:',
'Piwnica:',
'Kształt działki:',
'Szerokość działki (mb.):',
'Długość działki (mb.):',
'Droga dojazdowa:',
'Gaz:',
'Prąd:',
'Siła:']
with open('data.csv', 'w', newline='') as csvfile:
csvwriter = csv.writer(csvfile, delimiter=',', quotechar='"')
csvwriter.writerow(headers)
row = ['-'] * len(headers)
for dt, dd in zip(page_soup.select('section#quick-summary dt'), page_soup.select('section#quick-summary dd')):
if dt.text.strip() not in headers:
print("Warning, column [{}] doesn't exist in headers!".format(dt.text.strip()))
continue
row[headers.index(dt.text.strip())] = dd.text.strip()
csvwriter.writerow(row)
结果将像这样保存在csv文件中(不存在的值将替换为'-'):