将tf.while_loop
与tf.cond
一起使用是很容易的。为什么错误条件从未得到满足?
i0 = tf.constant(1)
m0 = tf.zeros([1, 2], dtype=tf.int32)
first_set = tf.Variable(True, dtype=tf.bool)
def cond_true_fn(i, m):
global first_set
first_set = tf.assign(first_set, False)
return [i + 1, tf.concat([m, [[6, 6]]], axis=0)]
def cond_false_fn(i, m):
return [i + 1, tf.concat([m, [[3, 3]]], axis=0)]
def body(i, m):
return tf.cond(first_set, lambda:cond_true_fn(i,m), lambda:cond_false_fn(i,m))
def condi(i, m):
return tf.less_equal(i, 3)
_, r = tf.while_loop(condi, body, loop_vars=[i0, m0], shape_invariants=[i0.get_shape(), tf.TensorShape([None, 2])], back_prop=False)
with tf.Session() as sess:
tf.global_variables_initializer().run()
_r = sess.run([r])
print(_r)
它总是处于真实状态。给我意外的结果,如下所示:
[[0, 0], [6, 6], [6, 6], [6, 6]]
答案 0 :(得分:0)
i0 = tf.constant(1)
m0 = tf.zeros([1, 2], dtype=tf.int32)
f0 = tf.constant(True)
def cond_true_fn(i, m):
return [i + 1, tf.concat([m, [[6, 6]]], axis=0), False]
def cond_false_fn(i, m):
return [i + 1, tf.concat([m, [[3, 3]]], axis=0), False]
def body(i, m, f):
return tf.cond(f, lambda:cond_true_fn(i,m), lambda:cond_false_fn(i,m))
def condi(i, m, f):
return tf.less_equal(i, 3)
_, r = tf.while_loop(condi, body, loop_vars=[i0, m0, f0], shape_invariants=[i0.get_shape(), tf.TensorShape([None, 2]), f0.get_shape()], back_prop=False)
with tf.Session() as sess:
tf.global_variables_initializer().run()
_r = sess.run([r])
print(_r)
这有效!但是为什么?