R:为什么在将列转换为因数后仍无法获得类型或类的“因数”?

时间:2018-07-29 16:19:21

标签: r dataframe apply factors r-factor

我有以下设置。

df <- data.frame(aa = rnorm(1000), bb = rnorm(1000))

apply(df, 2, typeof)
#      aa       bb 
#"double" "double" 

apply(df, 2, class)
#       aa        bb 
#"numeric" "numeric" 

然后,我尝试将其中一列转换为“ factor”。但是正如您在下面看到的那样,我没有任何“因素”类型或类。我做错什么了吗?

df[, 1] <- as.factor(df[, 1])

apply(df, 2, typeof)
#         aa          bb 
#"character" "character" 

apply(df, 2, class)
#         aa          bb 
#"character" "character" 

1 个答案:

答案 0 :(得分:6)

很抱歉,我的原始答案写得不好。为什么我一开始就提到“因素矩阵”?这是一个更好的尝试。

来自?apply

 If ‘X’ is not an array but an object of a class with a non-null
 ‘dim’ value (such as a data frame), ‘apply’ attempts to coerce it
 to an array via ‘as.matrix’ if it is two-dimensional (e.g., a data
 frame) or via ‘as.array’.

因此,在as.matrix行或列应用之前,FUN将数据帧转换为矩阵。

来自?as.matrix

 ‘as.matrix’ is a generic function.  The method for data frames
 will return a character matrix if there is only atomic columns and
 any non-(numeric/logical/complex) column, applying ‘as.vector’ to
 factors and ‘format’ to other non-character columns.  Otherwise,
 the usual coercion hierarchy (logical < integer < double <
 complex) will be used, e.g., all-logical data frames will be
 coerced to a logical matrix, mixed logical-integer will give a
 integer matrix, etc.

 The default method for ‘as.matrix’ calls ‘as.vector(x)’, and hence
 e.g. coerces factors to character vectors.

我不是说英语的人,所以我看不懂以下内容(看起来很重要!)。有人可以澄清吗?

  

如果只有原子列和任何非(数字/逻辑/复数)列,则数据框的方法将返回字符矩阵,将“ as.vector”应用于因子,将“ format”应用于其他非字符列

来自?as.vector

 Note that factors are _not_ vectors; ‘is.vector’ returns ‘FALSE’
 and ‘as.vector’ converts a factor to a character vector for ‘mode
 = "any"’.

简单地说,只要您在数据框中有一个因子列,as.matrix就会为您提供一个字符矩阵。


我相信这个带有数据帧问题的apply已经提出了很多次,以上只是增加了另一个重复的答案。真对不起。我未能仔细阅读OP的问题。首先让我感到震惊的是,R无法建立真正的因子矩阵。

f <- factor(letters[1:4])

matrix(f, 2, 2)
#     [,1] [,2]
#[1,] "a"  "c" 
#[2,] "b"  "d" 

## a sneaky way to get a matrix of factors by setting `dim` attribute
dim(f) <- c(2, 2)
#     [,1] [,2]
#[1,] a    c   
#[2,] b    d   
#Levels: a b c d

is.matrix(f)
#[1] TRUE

class(f)
#[1] "factor"  ## not a true matrix with "matrix" class

虽然这很有趣,但它应该与OP的问题无关。

再次抱歉在这里弄得一团糟。太糟糕了!


  

因此,如果我sapply会有所帮助吗?因为我有很多列需​​要转换为因数。

实际使用lapplysapply会将结果简化为一个数组,该数组是二维情况下的矩阵。这是一个示例:

dat <- head(trees)
sapply(dat, as.factor)
#     Girth  Height Volume
#[1,] "8.3"  "70"   "10.3"
#[2,] "8.6"  "65"   "10.3"
#[3,] "8.8"  "63"   "10.2"
#[4,] "10.5" "72"   "16.4"
#[5,] "10.7" "81"   "18.8"
#[6,] "10.8" "83"   "19.7"

new_dat <- data.frame(lapply(dat, as.factor))
str(new_dat)
#'data.frame':  6 obs. of  3 variables:
# $ Girth : Factor w/ 6 levels "8.3","8.6","8.8",..: 1 2 3 4 5 6
# $ Height: Factor w/ 6 levels "63","65","70",..: 3 2 1 4 5 6
# $ Volume: Factor w/ 5 levels "10.2","10.3",..: 2 2 1 3 4 5

sapply(new_dat, class)
#   Girth   Height   Volume 
#"factor" "factor" "factor" 

apply(new_dat, 2, class)
#      Girth      Height      Volume 
#"character" "character" "character" 

关于typeof,因子实际上存储为整数。

sapply(new_dat, typeof)
#    Girth    Height    Volume 
#"integer" "integer" "integer" 

当您dput一个因素时,您会看到这一点。例如:

dput(new_dat[[1]])
#structure(1:6, .Label = c("8.3", "8.6", "8.8", "10.5", "10.7", 
#"10.8"), class = "factor")

实际值是1:6。字符级别只是一个属性。