如何在急切执行时在Tensorboard中可视化keras卷积过滤器

时间:2018-07-28 17:53:49

标签: python tensorflow keras tensorboard

给出以下模型,是否可以从每个卷积滤波器中获取图像?我似乎找不到解决方法。

    tf.enable_eager_execution()

    l = tf.keras.layers
    max_pool = l.MaxPooling2D((2, 2), (2, 2), padding='same', data_format=data_format)

    kmodel = tf.keras.Sequential(
        [
            l.Reshape(target_shape=input_shape, input_shape=(IMAGE_SIZE * IMAGE_SIZE * colors,)),
            l.Conv2D(32, (5,5), padding='same', data_format=data_format, activation=tf.nn.relu),
            max_pool,
            l.Conv2D(64, (5,5), padding='same', data_format=data_format, activation=tf.nn.relu),
            max_pool,
            l.Conv2D(128, (5,5), padding='same', data_format=data_format, activation=tf.nn.relu),
            max_pool,
            l.Conv2D(256, (5,5), padding='same', data_format=data_format, activation=tf.nn.relu),
            max_pool,
            l.Flatten(),
            l.Dense(1024, activation=tf.nn.relu),
            l.Dropout(0.4),
            l.Dense(num_classes) #num_classes
        ]
    )

# how to get tf.contrib.image for each of the 4 filters?

靠近但没有雪茄:

https://stackoverflow.com/a/35858950

https://github.com/InFoCusp/tf_cnnvis

谢谢!

说明更新:也使用tf.GradientTape API

0 个答案:

没有答案