将已排序的数组拆分为带有子列表的列表

时间:2018-07-28 12:31:38

标签: python python-3.x numpy

我有一个float32值的排序数组,我想将此数组拆分为仅包含如下相同值的列表列表:

>>> split_sorted(array) # [1., 1., 1., 2., 2., 3.]
>>> [[1., 1., 1.], [2., 2.], [3.]]

我当前的方法是此功能

def split_sorted(array):
    split = [[array[0]]]

    s_index = 0
    a_index = 1
    while a_index < len(array):
        while a_index < len(array) and array[a_index] == split[s_index][0]:
            split[s_index].append(array[a_index])
            a_index += 1
        else:
            if a_index < len(array):
                s_index += 1
                a_index += 1
                split.append([array[a_index]])

我现在的问题是,还有更多的Python方式可以做到这一点吗?也许甚至用numpy?这是最高效的方法吗?

非常感谢!

5 个答案:

答案 0 :(得分:2)

方法1

a作为数组,我们可以使用np.split-

np.split(a,np.flatnonzero(a[:-1] != a[1:])+1)

样品运行-

In [16]: a
Out[16]: array([1., 1., 1., 2., 2., 3.])

In [17]: np.split(a,np.flatnonzero(a[:-1] != a[1:])+1)
Out[17]: [array([1., 1., 1.]), array([2., 2.]), array([3.])]

方法2

另一种更有效的方法是获取 splitting 索引,然后将数组切成zipping-

idx = np.flatnonzero(np.r_[True, a[:-1] != a[1:], True])
out = [a[i:j] for i,j in zip(idx[:-1],idx[1:])]

方法3

如果必须获得子列表的列表作为输出,我们可以使用列表重复来重新创建-

mask = np.r_[True, a[:-1] != a[1:], True]
c = np.diff(np.flatnonzero(mask))
out = [[i]*j for i,j in zip(a[mask[:-1]],c)]

基准化

具有1000000个唯一元素的10000个元素上矢量化方法的时间-

In [145]: np.random.seed(0)
     ...: a = np.sort(np.random.randint(1,10000,(1000000)))

In [146]: x = a

# Approach #1 from this post
In [147]: %timeit np.split(a,np.flatnonzero(a[:-1] != a[1:])+1)
100 loops, best of 3: 10.5 ms per loop

# Approach #2 from this post
In [148]: %%timeit
     ...: idx = np.flatnonzero(np.r_[True, a[:-1] != a[1:], True])
     ...: out = [a[i:j] for i,j in zip(idx[:-1],idx[1:])]
100 loops, best of 3: 5.18 ms per loop

# Approach #3 from this post
In [197]: %%timeit
     ...: mask = np.r_[True, a[:-1] != a[1:], True]
     ...: c = np.diff(np.flatnonzero(mask))
     ...: out = [[i]*j for i,j in zip(a[mask[:-1]],c)]
100 loops, best of 3: 11.1 ms per loop

# @RafaelC's soln
In [149]: %%timeit
     ...: v,c = np.unique(x, return_counts=True)
     ...: out = [[a]*b for (a,b) in zip(v,c)]
10 loops, best of 3: 25.6 ms per loop

答案 1 :(得分:1)

您可以使用numpy.uniquezip

v,c = np.unique(x, return_counts=True)
[[a]*b for (a,b) in zip(v,c)]

输出

[[1.0, 1.0, 1.0], [2.0, 2.0], [3.0]]

600万个数组的时间

%timeit v,c = np.unique(x, return_counts=True); [[a]*b for (a,b) in zip(v,c)]
18.2 ms ± 236 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

%timeit np.split(x,np.flatnonzero(x[:-1] != x[1:])+1)
424 ms ± 11.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%timeit [list(group) for value, group in itertools.groupby(x)]
180 ms ± 4.42 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

答案 2 :(得分:0)

函数itertools.groupby具有确切的行为。

>>> from itertools import groupby
>>> [list(group) for value, group in groupby(array)]
[[1.0, 1.0, 1.0], [2.0, 2.0], [3.0]]

答案 3 :(得分:0)

>>> from itertools import groupby
>>> a = [1., 1., 1., 2., 2., 3.]
>>> for k, g in groupby(a) :
...     print k, list(g)
... 
1.0 [1.0, 1.0, 1.0]
2.0 [2.0, 2.0]
3.0 [3.0]

如果愿意,您可以加入列表

>>> result = []
>>> for k, g in groupby(a) :
...     result.append( list(g) )
... 
>>> result
[[1.0, 1.0, 1.0], [2.0, 2.0], [3.0]]

答案 4 :(得分:0)

我改进了您的代码,它不是pythonic,但是不使用外部库(而且您的代码在数组的最后一个元素上也不起作用):

def split_sorted(array):
    splitted = [[]]
    standard = array[0]
    li = 0 # inner lists index
    n = len(array)

for i in range(n):
    if standard != array[i]:
        standard = array[i]
        splitted.append([]) # appending empty list
        li += 1
    split[li].append(array[i])
return splitted


# test
array = [1,2,2,2,3]
a = split_sorted(array)
print(a)enter code here