为什么在列表中使用2个括号?

时间:2018-07-28 08:39:58

标签: python python-3.x pandas

您能帮助我理解为什么我们需要使用

features_one = train[["Pclass", "Sex", "Age", "Fare"]].values

但不是:features_one = train["Pclass", "Sex", "Age", "Fare"].values

#Print the train data to see the available features
#print(train)

# Create the target and features numpy arrays: target, features_one
target = train["Survived"].values
features_one = train[["Pclass", "Sex", "Age", "Fare"]].values

# Fit your first decision tree: my_tree_one
my_tree_one = tree.DecisionTreeClassifier()
my_tree_one = my_tree_one.fit(features_one,target)

# Look at the importance and score of the included features
print(my_tree_one.feature_importances_)
print(my_tree_one.score(features_one,target))

1 个答案:

答案 0 :(得分:1)

如果您的trainpandas.DataFrame,则需要使用大括号来列出。当数据框接收列表作为索引时,它将返回列表中指定的所有列的值:

In [1]: import pandas as pd

In [2]: df = pd.DataFrame({'a': [1, 2], 'b': [3, 4], 'c': [5, 6]})

In [3]: df
Out[3]:
   a  b  c
0  1  3  5
1  2  4  6

In [4]: df['a', 'b']
---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
~/anaconda3/lib/python3.6/site-packages/pandas/indexes/base.py in get_loc(self, key, method, tolerance)
   2133             try:
-> 2134                 return self._engine.get_loc(key)
   2135             except KeyError:

pandas/index.pyx in pandas.index.IndexEngine.get_loc (pandas/index.c:4433)()

pandas/index.pyx in pandas.index.IndexEngine.get_loc (pandas/index.c:4279)()

pandas/src/hashtable_class_helper.pxi in pandas.hashtable.PyObjectHashTable.get_item (pandas/hashtable.c:13742)()

pandas/src/hashtable_class_helper.pxi in pandas.hashtable.PyObjectHashTable.get_item (pandas/hashtable.c:13696)()

KeyError: ('a', 'b')

During handling of the above exception, another exception occurred:

KeyError                                  Traceback (most recent call last)
<ipython-input-4-8fa5ad5a23e2> in <module>()
----> 1 df['a', 'b']

~/anaconda3/lib/python3.6/site-packages/pandas/core/frame.py in __getitem__(self, key)
   2057             return self._getitem_multilevel(key)
   2058         else:
-> 2059             return self._getitem_column(key)
   2060
   2061     def _getitem_column(self, key):

~/anaconda3/lib/python3.6/site-packages/pandas/core/frame.py in _getitem_column(self, key)
   2064         # get column
   2065         if self.columns.is_unique:
-> 2066             return self._get_item_cache(key)
   2067
   2068         # duplicate columns & possible reduce dimensionality

~/anaconda3/lib/python3.6/site-packages/pandas/core/generic.py in _get_item_cache(self, item)
   1384         res = cache.get(item)
   1385         if res is None:
-> 1386             values = self._data.get(item)
   1387             res = self._box_item_values(item, values)
   1388             cache[item] = res

~/anaconda3/lib/python3.6/site-packages/pandas/core/internals.py in get(self, item, fastpath)
   3541
   3542             if not isnull(item):
-> 3543                 loc = self.items.get_loc(item)
   3544             else:
   3545                 indexer = np.arange(len(self.items))[isnull(self.items)]

~/anaconda3/lib/python3.6/site-packages/pandas/indexes/base.py in get_loc(self, key, method, tolerance)
   2134                 return self._engine.get_loc(key)
   2135             except KeyError:
-> 2136                 return self._engine.get_loc(self._maybe_cast_indexer(key))
   2137
   2138         indexer = self.get_indexer([key], method=method, tolerance=tolerance)

pandas/index.pyx in pandas.index.IndexEngine.get_loc (pandas/index.c:4433)()

pandas/index.pyx in pandas.index.IndexEngine.get_loc (pandas/index.c:4279)()

pandas/src/hashtable_class_helper.pxi in pandas.hashtable.PyObjectHashTable.get_item (pandas/hashtable.c:13742)()

pandas/src/hashtable_class_helper.pxi in pandas.hashtable.PyObjectHashTable.get_item (pandas/hashtable.c:13696)()

KeyError: ('a', 'b')

In [5]: df[['a', 'b']]
Out[5]:
   a  b
0  1  3
1  2  4

In [6]: df[['a', 'b']].values
Out[6]:
array([[1, 3],
       [2, 4]])