因此,我试图测试在github页上插入帧的算法。我正在所提供的Middlebury数据集上测试该算法,链接为:http://vision.middlebury.edu/flow/data/。(我只使用彩色图像,只有两帧。在优胜美地图像文件中也发生了错误)该算法在除最后一个。它会引发错误:
Traceback (most recent call last):
File "run.py", line 257, in
tensorInputFirst = torch.FloatTensor(numpy.rollaxis(numpy.asarray(PIL.Image.open(arguments_strFirst))[:,:,::-1], 2, 0).astype(numpy.float32) / 255.0)
IndexError: too many indices for array
我知道错误的含义,该索引不在列表中,但是我不知道它与帧插值的关系以及为什么会发生。有人可以帮忙吗。
我在github上找到的代码:
#!/usr/bin/env python2.7
import sys
import getopt
import math
import numpy
import torch
import torch.utils.serialization
import PIL
import PIL.Image
from moviepy.video.io.ffmpeg_reader import FFMPEG_VideoReader
from moviepy.video.io.ffmpeg_writer import FFMPEG_VideoWriter
from SeparableConvolution import SeparableConvolution # the custom SeparableConvolution layer
torch.cuda.device(1)
torch.backends.cudnn.enabled = True
##########################################################
arguments_strModel = 'lf'
arguments_strFirst = './images/first.png'
arguments_strSecond = './images/second.png'
arguments_strOut = './result.png'
arguments_strVideo = ''
arguments_strVideoOut = ''
for strOption, strArgument in getopt.getopt(sys.argv[1:], '', [ strParameter[2:] + '=' for strParameter in sys.argv[1::2] ])[0]:
if strOption == '--model':
arguments_strModel = strArgument # which model to use, l1 or lf, please see our paper for more details
elif strOption == '--first':
arguments_strFirst = strArgument # path to the first frame
elif strOption == '--second':
arguments_strSecond = strArgument # path to the second frame
elif strOption == '--out':
arguments_strOut = strArgument # path to where the output should be stored
elif strOption == '--video':
arguments_strVideo = strArgument # path to the video
elif strOption == '--video-out':
arguments_strVideoOut = strArgument # path to the video
##########################################################
class Network(torch.nn.Module):
def __init__(self):
super(Network, self).__init__()
def Basic(intInput, intOutput):
return torch.nn.Sequential(
torch.nn.Conv2d(in_channels=intInput, out_channels=intOutput, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False),
torch.nn.Conv2d(in_channels=intOutput, out_channels=intOutput, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False),
torch.nn.Conv2d(in_channels=intOutput, out_channels=intOutput, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False)
)
def Subnet():
return torch.nn.Sequential(
torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False),
torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False),
torch.nn.Conv2d(in_channels=64, out_channels=51, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False),
torch.nn.Upsample(scale_factor=2, mode='bilinear'),
torch.nn.Conv2d(in_channels=51, out_channels=51, kernel_size=3, stride=1, padding=1)
)
self.moduleConv1 = Basic(6, 32)
self.modulePool1 = torch.nn.AvgPool2d(kernel_size=2, stride=2)
self.moduleConv2 = Basic(32, 64)
self.modulePool2 = torch.nn.AvgPool2d(kernel_size=2, stride=2)
self.moduleConv3 = Basic(64, 128)
self.modulePool3 = torch.nn.AvgPool2d(kernel_size=2, stride=2)
self.moduleConv4 = Basic(128, 256)
self.modulePool4 = torch.nn.AvgPool2d(kernel_size=2, stride=2)
self.moduleConv5 = Basic(256, 512)
self.modulePool5 = torch.nn.AvgPool2d(kernel_size=2, stride=2)
self.moduleDeconv5 = Basic(512, 512)
self.moduleUpsample5 = torch.nn.Sequential(
torch.nn.Upsample(scale_factor=2, mode='bilinear'),
torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False)
)
self.moduleDeconv4 = Basic(512, 256)
self.moduleUpsample4 = torch.nn.Sequential(
torch.nn.Upsample(scale_factor=2, mode='bilinear'),
torch.nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False)
)
self.moduleDeconv3 = Basic(256, 128)
self.moduleUpsample3 = torch.nn.Sequential(
torch.nn.Upsample(scale_factor=2, mode='bilinear'),
torch.nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False)
)
self.moduleDeconv2 = Basic(128, 64)
self.moduleUpsample2 = torch.nn.Sequential(
torch.nn.Upsample(scale_factor=2, mode='bilinear'),
torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False)
)
self.moduleVertical1 = Subnet()
self.moduleVertical2 = Subnet()
self.moduleHorizontal1 = Subnet()
self.moduleHorizontal2 = Subnet()
self.modulePad = torch.nn.ReplicationPad2d([ int(math.floor(51 / 2.0)), int(math.floor(51 / 2.0)), int(math.floor(51 / 2.0)), int(math.floor(51 / 2.0)) ])
self.load_state_dict(torch.load('./network-' + arguments_strModel + '.pytorch'))
def forward(self, variableInput1, variableInput2):
variableJoin = torch.cat([variableInput1, variableInput2], 1)
variableConv1 = self.moduleConv1(variableJoin)
variablePool1 = self.modulePool1(variableConv1)
variableConv2 = self.moduleConv2(variablePool1)
variablePool2 = self.modulePool2(variableConv2)
variableConv3 = self.moduleConv3(variablePool2)
variablePool3 = self.modulePool3(variableConv3)
variableConv4 = self.moduleConv4(variablePool3)
variablePool4 = self.modulePool4(variableConv4)
variableConv5 = self.moduleConv5(variablePool4)
variablePool5 = self.modulePool5(variableConv5)
variableDeconv5 = self.moduleDeconv5(variablePool5)
variableUpsample5 = self.moduleUpsample5(variableDeconv5)
variableDeconv4 = self.moduleDeconv4(variableUpsample5 + variableConv5)
variableUpsample4 = self.moduleUpsample4(variableDeconv4)
variableDeconv3 = self.moduleDeconv3(variableUpsample4 + variableConv4)
variableUpsample3 = self.moduleUpsample3(variableDeconv3)
variableDeconv2 = self.moduleDeconv2(variableUpsample3 + variableConv3)
variableUpsample2 = self.moduleUpsample2(variableDeconv2)
variableCombine = variableUpsample2 + variableConv2
variableDot1 = SeparableConvolution()(self.modulePad(variableInput1), self.moduleVertical1(variableCombine), self.moduleHorizontal1(variableCombine))
variableDot2 = SeparableConvolution()(self.modulePad(variableInput2), self.moduleVertical2(variableCombine), self.moduleHorizontal2(variableCombine))
return variableDot1 + variableDot2
moduleNetwork = Network().cuda()
##########################################################
def process(tensorInputFirst, tensorInputSecond, tensorOutput):
assert(tensorInputFirst.size(1) == tensorInputSecond.size(1))
assert(tensorInputFirst.size(2) == tensorInputSecond.size(2))
intWidth = tensorInputFirst.size(2)
intHeight = tensorInputFirst.size(1)
assert(intWidth <= 1280) # while our approach works with larger images, we do not recommend it unless you are aware of the implications
assert(intHeight <= 720) # while our approach works with larger images, we do not recommend it unless you are aware of the implications
intPaddingLeft = int(math.floor(51 / 2.0))
intPaddingTop = int(math.floor(51 / 2.0))
intPaddingRight = int(math.floor(51 / 2.0))
intPaddingBottom = int(math.floor(51 / 2.0))
modulePaddingInput = torch.nn.Module()
modulePaddingOutput = torch.nn.Module()
if True:
intPaddingWidth = intPaddingLeft + intWidth + intPaddingRight
intPaddingHeight = intPaddingTop + intHeight + intPaddingBottom
if intPaddingWidth != ((intPaddingWidth >> 7) << 7):
intPaddingWidth = (((intPaddingWidth >> 7) + 1) << 7) # more than necessary
if intPaddingHeight != ((intPaddingHeight >> 7) << 7):
intPaddingHeight = (((intPaddingHeight >> 7) + 1) << 7) # more than necessary
intPaddingWidth = intPaddingWidth - (intPaddingLeft + intWidth + intPaddingRight)
intPaddingHeight = intPaddingHeight - (intPaddingTop + intHeight + intPaddingBottom)
modulePaddingInput = torch.nn.ReplicationPad2d([intPaddingLeft, intPaddingRight + intPaddingWidth, intPaddingTop, intPaddingBottom + intPaddingHeight])
modulePaddingOutput = torch.nn.ReplicationPad2d([0 - intPaddingLeft, 0 - intPaddingRight - intPaddingWidth, 0 - intPaddingTop, 0 - intPaddingBottom - intPaddingHeight])
if True:
tensorInputFirst = tensorInputFirst.cuda()
tensorInputSecond = tensorInputSecond.cuda()
modulePaddingInput = modulePaddingInput.cuda()
modulePaddingOutput = modulePaddingOutput.cuda()
if True:
variablePaddingFirst = modulePaddingInput(torch.autograd.Variable(data=tensorInputFirst.view(1, 3, intHeight, intWidth), volatile=True))
variablePaddingSecond = modulePaddingInput(torch.autograd.Variable(data=tensorInputSecond.view(1, 3, intHeight, intWidth), volatile=True))
variablePaddingOutput = modulePaddingOutput(moduleNetwork(variablePaddingFirst, variablePaddingSecond))
tensorOutput.resize_(3, intHeight, intWidth).copy_(variablePaddingOutput.data[0])
if True:
tensorInputFirst.cpu()
tensorInputSecond.cpu()
tensorOutput.cpu()
tensorOutput = torch.FloatTensor()
if arguments_strVideo and arguments_strVideoOut:
reader = FFMPEG_VideoReader(arguments_strVideo, False)
writer = FFMPEG_VideoWriter(arguments_strVideoOut, reader.size, reader.fps*2)
reader.initialize()
nextFrame = reader.read_frame()
for x in range(0, reader.nframes):
firstFrame = nextFrame
nextFrame = reader.read_frame()
tensorInputFirst = torch.FloatTensor(numpy.rollaxis(firstFrame[:,:,::-1], 2, 0) / 255.0)
tensorInputSecond = torch.FloatTensor(numpy.rollaxis(nextFrame[:,:,::-1], 2, 0) / 255.0)
process(tensorInputFirst, tensorInputSecond, tensorOutput)
writer.write_frame(firstFrame)
writer.write_frame((numpy.rollaxis(tensorOutput.clamp(0.0, 1.0).numpy(), 0, 3)[:,:,::-1] * 255.0).astype(numpy.uint8))
writer.write_frame(nextFrame)
writer.close()
else:
tensorInputFirst = torch.FloatTensor(numpy.rollaxis(numpy.asarray(PIL.Image.open(arguments_strFirst))[:,:,::-1], 2, 0).astype(numpy.float32) / 255.0)
tensorInputSecond = torch.FloatTensor(numpy.rollaxis(numpy.asarray(PIL.Image.open(arguments_strSecond))[:,:,::-1], 2, 0).astype(numpy.float32) / 255.0)
process(tensorInputFirst, tensorInputSecond, tensorOutput)
PIL.Image.fromarray((numpy.rollaxis(tensorOutput.clamp(0.0, 1.0).numpy(), 0, 3)[:,:,::-1] * 255.0).astype(numpy.uint8)).save(arguments_strOut)
更新
我找到了错误的原因。这是因为图像是灰度的,而我测试的其他图像是彩色的,因为彩色的是24位深度,而灰度是8位深度。如何修改代码以使其在灰度图像上工作。