要检查一个数据帧中的内容是否也在另一个数据帧中。
原始数据框有2列,即ID及其对应的Fruits。还有另一个大小(行和列数)不同的数据框
在原始数据框中,如果ID与ID_1匹配,并且ID的对应水果在ID_1的对应Content或Content_1中,请创建一个新列以进行标识。 (所需的输出在此问题的结尾)
我试图合并两个数据帧以进行进一步处理。到目前为止,我有:
import pandas as pd
data = {'ID': ["4589", "14805", "23591", "47089", "56251", "85964", "235225", "322624", "342225", "380689", "480562", "5623", "85624", "866278"],
'Fruit' : ["Avocado", "Blackberry", "Black Sapote", "Fingered Citron", "Crab Apples", "Custard Apple", "Chico Fruit", "Coconut", "Damson", "Elderberry", "Goji Berry", "Grape", "Guava", "Huckleberry"]
}
data_1 = {'ID_1': ["488", "14805", "23591", "470995", "56251", "85964", "5268", "322624", "342225", "380689", "480562", "5623"],
'Content' : ["Kalo Beruin", "this is Blackberry", "Khara Beruin", "Khato Dosh", "Lapha", "Loha Sura", "Matichak", "Miniket Rice", "Mou Beruin", "Moulata", "oh Goji Berry", "purple Grape"],
'Content_1' : ["Jook-sing noodles", "Kaomianjin", "Lai fun", "Lamian", "Liangpi", "who wants Custard Apple", "Misua", "nana Coconut", "Damson", "Paomo", "Ramen", "Rice vermicelli"]
}
df = pd.DataFrame(data)
df = df[['ID', 'Fruit']]
df_1 = pd.DataFrame(data_1)
df_1 = df_1[['ID_1', 'Content', 'Content_1']]
result = df.merge(df_1, left_on = 'ID', right_on = 'ID_1', how = 'outer')
for index, row in result.iterrows():
if row["ID"] == row["ID_1"] and row["Fruit"] in row["Content"] or row["Fruit"] in row["Content_1"]:
print row["ID"] + row["Fruit"]
它给了我 TypeError:类型为'float'的参数是不可迭代的
(我正在使用的Pandas版本是v.0.20.3。)
如何实现?谢谢。
答案 0 :(得分:2)
在某些情况下,row["Content"]
和row["Content_1"]
的内容为NaN
。 NaN
是float
,并且它也是不可迭代的-这就是为什么您会收到错误消息。
您可以使用try
/ except
来捕获这些内容:
for index, row in result.iterrows():
try:
if row["ID"] == row["ID_1"] and row["Fruit"] in row["Content"] or row["Fruit"] in row["Content_1"]:
print( str(row["ID"]) + row["Fruit"])
except TypeError as e:
print(e, "for:")
print(row)
我认为您的合并工作正常。要获取您指定的输出,只需添加一个Matched
列来检查NaN
值:
result = df.merge(df_1, left_on = 'ID', right_on = 'ID_1', how = 'outer')
result["Matched"] = np.where(result.isnull().any(axis=1), "N", "Y")
result
ID Fruit ID_1 Content \
0 4589 Avocado NaN NaN
1 14805 Blackberry 14805 this is Blackberry
2 23591 Black Sapote 23591 Khara Beruin
3 47089 Fingered Citron NaN NaN
4 56251 Crab Apples 56251 Lapha
5 85964 Custard Apple 85964 Loha Sura
Content_1 Matched
0 NaN N
1 Kaomianjin Y
2 Lai fun Y
3 NaN N
4 Liangpi Y
5 who wants Custard Apple Y
答案 1 :(得分:1)
我认为需要:
#swap DataFrames with left join
result = df_1.merge(df, left_on = 'ID_1', right_on = 'ID', how = 'left')
#remove NaNs and create pattern with word boundary for check substrings
pat = r'\b{}\b'.format('|'.join(result["Fruit"].dropna()))
#boolan mask - rewritten iterrows to vectorized way
mask = ((result["ID"] == result["ID_1"]) &
result["Content"].str.contains(pat, na=False) |
result["Content_1"].str.contains(pat, na=False))
#remove unnecessary columns
result = result.drop(['ID','Fruit'], axis=1)
#add indicator column
result['matched'] = np.where(mask, 'Y', '')
print (result)
ID_1 Content Content_1 matched
0 488 Kalo Beruin Jook-sing noodles
1 14805 this is Blackberry Kaomianjin Y
2 23591 Khara Beruin Lai fun
3 470995 Khato Dosh Lamian
4 56251 Lapha Liangpi
5 85964 Loha Sura who wants Custard Apple Y
6 5268 Matichak Misua
7 322624 Miniket Rice nana Coconut Y
8 342225 Mou Beruin Damson Y
9 380689 Moulata Paomo
10 480562 oh Goji Berry Ramen Y
11 5623 purple Grape Rice vermicelli Y
使用outer
加入的旧解决方案:
result = df.merge(df_1, left_on = 'ID', right_on = 'ID_1', how = 'outer')
pat = r'\b{}\b'.format('|'.join(result["Fruit"].dropna()))
mask = ((result["ID"] == result["ID_1"]) &
result["Content"].str.contains(pat, na=False)|
result["Content_1"].str.contains(pat, na=False))
result['matched'] = np.where(mask, 'Y', '')
print (result)
ID Fruit ID_1 Content \
0 4589 Avocado NaN NaN
1 14805 Blackberry 14805 this is Blackberry
2 23591 Black Sapote 23591 Khara Beruin
3 47089 Fingered Citron NaN NaN
4 56251 Crab Apples 56251 Lapha
5 85964 Custard Apple 85964 Loha Sura
6 235225 Chico Fruit NaN NaN
7 322624 Coconut 322624 Miniket Rice
8 342225 Damson 342225 Mou Beruin
9 380689 Elderberry 380689 Moulata
10 480562 Goji Berry 480562 oh Goji Berry
11 5623 Grape 5623 purple Grape
12 85624 Guava NaN NaN
13 866278 Huckleberry NaN NaN
14 NaN NaN 488 Kalo Beruin
15 NaN NaN 470995 Khato Dosh
16 NaN NaN 5268 Matichak
Content_1 matched
0 NaN
1 Kaomianjin Y
2 Lai fun
3 NaN
4 Liangpi
5 who wants Custard Apple Y
6 NaN
7 nana Coconut Y
8 Damson Y
9 Paomo
10 Ramen Y
11 Rice vermicelli Y
12 NaN
13 NaN
14 Jook-sing noodles
15 Lamian
16 Misua