这是我第一次尝试使用KTable
。我有一个Kafka Stream,其中包含类型为A,B
的Avro序列化对象。这很好。我可以写一个可以使用的使用者,也可以编写简单的KStream
来简单地对记录进行计数。
B
对象具有一个包含国家/地区代码的字段。我想将该代码提供给KTable,以便它可以计算包含特定国家/地区代码的记录数。为此,我试图将流转换为X,Y
的流(或者实际上是:国家/地区代码,计数)。最终,我查看了表格的内容并提取了一组KV对。
我拥有(包含)的代码总是会因以下错误而出错(请参见带有“ Caused by”的行):
2018-07-26 13:42:48.688 [com.findology.tools.controller.TestEventGeneratorController-16d7cd06-4742-402e-a679-898b9ef78c41-StreamThread-1; AssignedStreamsTasks] ERROR -- stream-thread [com.findology.tools.controller.TestEventGeneratorController-16d7c\
d06-4742-402e-a679-898b9ef78c41-StreamThread-1] Failed to process stream task 0_0 due to the following error:
org.apache.kafka.streams.errors.StreamsException: Exception caught in process. taskId=0_0, processor=KSTREAM-SOURCE-0000000000, topic=com.findology.model.traffic.CpaTrackingCallback, partition=0, offset=962649
at org.apache.kafka.streams.processor.internals.StreamTask.process(StreamTask.java:240)
at org.apache.kafka.streams.processor.internals.AssignedStreamsTasks.process(AssignedStreamsTasks.java:94)
at org.apache.kafka.streams.processor.internals.TaskManager.process(TaskManager.java:411)
at org.apache.kafka.streams.processor.internals.StreamThread.processAndMaybeCommit(StreamThread.java:922)
at org.apache.kafka.streams.processor.internals.StreamThread.runOnce(StreamThread.java:802)
at org.apache.kafka.streams.processor.internals.StreamThread.runLoop(StreamThread.java:749)
at org.apache.kafka.streams.processor.internals.StreamThread.run(StreamThread.java:719)
Caused by: org.apache.kafka.streams.errors.StreamsException: A serializer (key: org.apache.kafka.common.serialization.ByteArraySerializer / value: org.apache.kafka.common.serialization.ByteArraySerializer) is not compatible to the actual key or value type (key type: java.lang.Integer / value type: java.lang.Integer). Change the default Serdes in StreamConfig or provide correct Serdes via method parameters.
at org.apache.kafka.streams.processor.internals.SinkNode.process(SinkNode.java:92)
at org.apache.kafka.streams.processor.internals.AbstractProcessorContext.forward(AbstractProcessorContext.java:174)
at org.apache.kafka.streams.kstream.internals.KStreamFilter$KStreamFilterProcessor.process(KStreamFilter.java:43)
at org.apache.kafka.streams.processor.internals.ProcessorNode$1.run(ProcessorNode.java:46)
at org.apache.kafka.streams.processor.internals.StreamsMetricsImpl.measureLatencyNs(StreamsMetricsImpl.java:211)
at org.apache.kafka.streams.processor.internals.ProcessorNode.process(ProcessorNode.java:124)
at org.apache.kafka.streams.processor.internals.AbstractProcessorContext.forward(AbstractProcessorContext.java:174)
at org.apache.kafka.streams.kstream.internals.KStreamTransform$KStreamTransformProcessor.process(KStreamTransform.java:59)
at org.apache.kafka.streams.processor.internals.ProcessorNode$1.run(ProcessorNode.java:46)
at org.apache.kafka.streams.processor.internals.StreamsMetricsImpl.measureLatencyNs(StreamsMetricsImpl.java:211)
at org.apache.kafka.streams.processor.internals.ProcessorNode.process(ProcessorNode.java:124)
at org.apache.kafka.streams.processor.internals.AbstractProcessorContext.forward(AbstractProcessorContext.java:174)
at org.apache.kafka.streams.processor.internals.SourceNode.process(SourceNode.java:80)
at org.apache.kafka.streams.processor.internals.StreamTask.process(StreamTask.java:224)
... 6 more
Caused by: java.lang.ClassCastException: java.lang.Integer cannot be cast to [B
at org.apache.kafka.common.serialization.ByteArraySerializer.serialize(ByteArraySerializer.java:21)
at org.apache.kafka.streams.processor.internals.RecordCollectorImpl.send(RecordCollectorImpl.java:146)
at org.apache.kafka.streams.processor.internals.RecordCollectorImpl.send(RecordCollectorImpl.java:94)
at org.apache.kafka.streams.processor.internals.SinkNode.process(SinkNode.java:87)
... 19 more
这是我正在使用的代码。为了简洁起见,我省略了某些类。 请注意,我不是使用Confluent KafkaAvro类。
private synchronized void createStreamProcessor2() {
if (streams == null) {
try {
Properties props = new Properties();
props.put(StreamsConfig.APPLICATION_ID_CONFIG, getClass().getName());
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
StreamsConfig config = new StreamsConfig(props);
StreamsBuilder builder = new StreamsBuilder();
Map<String, Object> serdeProps = new HashMap<>();
serdeProps.put("schema.registry.url", schemaRegistryURL);
AvroSerde<CpaTrackingCallback> cpaTrackingCallbackAvroSerde = new AvroSerde<>(schemaRegistryURL);
cpaTrackingCallbackAvroSerde.configure(serdeProps, false);
// This is the key to telling kafka the specific Serde instance to use
// to deserialize the Avro encoded value
KStream<Long, CpaTrackingCallback> stream = builder.stream(CpaTrackingCallback.class.getName(),
Consumed.with(Serdes.Long(), cpaTrackingCallbackAvroSerde));
// provide a way to convert CpsTrackicking... info into just country codes
// (Long, CpaTrackingCallback) -> (countryCode:Integer, placeHolder:Long)
TransformerSupplier<Long, CpaTrackingCallback, KeyValue<Integer, Long>> transformer = new TransformerSupplier<Long, CpaTrackingCallback, KeyValue<Integer, Long>>() {
@Override
public Transformer<Long, CpaTrackingCallback, KeyValue<Integer, Long>> get() {
return new Transformer<Long, CpaTrackingCallback, KeyValue<Integer, Long>>() {
@Override
public void init(ProcessorContext context) {
// Not doing Punctuate so no need to store context
}
@Override
public KeyValue<Integer, Long> transform(Long key, CpaTrackingCallback value) {
return new KeyValue(value.getCountryCode(), 1);
}
@Override
public KeyValue<Integer, Long> punctuate(long timestamp) {
return null;
}
@Override
public void close() {
}
};
}
};
KTable<Integer, Long> countryCounts = stream.transform(transformer).groupByKey() //
.count(Materialized.as("country-counts"));
streams = new KafkaStreams(builder.build(), config);
Runtime.getRuntime().addShutdownHook(new Thread(streams::close));
streams.cleanUp();
streams.start();
try {
countryCountsView = waitUntilStoreIsQueryable("country-counts", QueryableStoreTypes.keyValueStore(),
streams);
}
catch (InterruptedException e) {
log.warn("Interrupted while waiting for query store to become available", e);
}
}
catch (Exception e) {
log.error(e);
}
}
}
答案 0 :(得分:3)
groupByKey()
上的裸KStream
方法使用默认的序列化器/反序列化器(尚未设置)。使用方法groupByKey(Serialized<K,V> serialized)
,如下所示:
.groupByKey(Serialized.with(Serdes.Integer(), Serdes.Long()))
还请注意,您可以在自定义TransformerSupplier中进行操作,只需进行KStream.map
调用即可。