我有一个定制的层来执行简单的线性变换。像x*w+b
。我想在训练期间更改w and b
,可以吗?例如,我想在第一次迭代中使用w1
,在第二次迭代中使用w2
。(w1
和w2
由我自己定义)。
答案 0 :(得分:0)
当然可以,但是您需要以一种聪明的方式来做到。这是您可以使用的一些代码。
from keras import backend as K
from keras.layers import *
from keras.models import *
import numpy as np
class MyDense( Layer ) :
def __init__( self, units=64, use_bias=True, **kwargs ) :
super(MyDense, self).__init__( **kwargs )
self.units = units
self.use_bias = use_bias
return
def build( self, input_shape ) :
input_dim = input_shape[-1]
self.count = 0
self.w1 = self.add_weight(shape=(input_dim, self.units), initializer='glorot_uniform', name='w1')
self.w0 = self.add_weight(shape=(input_dim, self.units), initializer='glorot_uniform', name='w0')
if self.use_bias:
self.bias = self.add_weight(shape=(self.units,),initializer='glorot_uniform',name='bias' )
else:
self.bias = None
self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim})
self.built = True
return
def call( self, x ) :
if self.count % 2 == 1 :
c0, c1 = 0, 1
else :
c0, c1 = 1, 0
w = c0 * self.w0 + c1 * self.w1
self.count += 1
output = K.dot( x, w )
if self.use_bias:
output = K.bias_add(output, self.bias, data_format='channels_last')
return output
def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape) >= 2
assert input_shape[-1]
output_shape = list(input_shape)
output_shape[-1] = self.units
return tuple(output_shape)
# define a dummy model
x = Input(shape=(128,))
y = MyDense(10)(x)
y = Dense(1, activation='sigmoid')(y)
model = Model(inputs=x, outputs=y)
print model.summary()
# get some dummy data
a = np.random.randn(100,128)
b = (np.random.randn(100,) > 0).astype('int32')
# compile and train
model.compile('adam', 'binary_crossentropy')
model.fit( a, b )
请注意:以下代码与我们上面的操作等效,但无法正常工作!
if self.count % 2 == 1 :
w = self.w0
else :
w = self.w1
为什么?因为一个变量具有zero
梯度(前一种实现)并不等同于具有None
梯度(后一种实现)。