通过将一个数据框的列与另一数据框的行残废来获取一个数据框

时间:2018-07-26 14:07:49

标签: python pandas dataframe pca

我有两个数据帧,形状为m * 5和5 * n。具有5列的第一个数据帧的列名与具有5行的第二个数据帧的索引相同。我想将第一个数据帧中每一行的每个元素与第二个数据帧中的第一列2列相乘,并在第二个数据帧中具有相应的行索引。请在下面的数据框内查找以供参考:

DataFrame 1:

                       %age_paid_0.0  %age_paid_0.1  %age_paid_0.2  %age_paid_0.3  \
account_angaza_id                                                               
AC005839                0.299221       0.377086       0.454950       0.532814   
AC005842                0.299221       0.299221       0.521691       0.521691   
AC005843                0.299221       0.377086       0.454950       0.532814   
AC005851                0.243604       0.310345       0.354839       0.354839   
AC005852                0.299221       0.377086       0.454950       0.532814   
AC005853                0.299221       0.377086       0.454950       0.532814   
AC005856                0.299221       0.377086       0.454950       0.532814   
AC005858                0.299221       0.377086       0.454950       0.532814   
AC005859                0.332592       0.432703       0.543938       0.650723   
AC005860                0.288098       0.365962       0.421580       0.532814   

                   %age_paid_0.4  %age_paid_0.5  
account_angaza_id                                
AC005839                0.610679       0.688543  
AC005842                0.521691       0.521691  
AC005843                0.610679       0.766407  
AC005851                0.510567       0.555061  
AC005852                0.610679       0.766407  
AC005853                0.610679       0.688543  
AC005856                0.610679       0.766407  
AC005858                0.543938       0.588432  
AC005859                0.650723       0.739711  
AC005860                0.532814       0.632925  

数据框2:

                      0         1
%age_paid_0.0  0.369886  0.673442
%age_paid_0.1  0.409603  0.374386
%age_paid_0.2  0.425269  0.058336
%age_paid_0.3  0.425229 -0.191075
%age_paid_0.4  0.415484 -0.369895
%age_paid_0.5  0.401384 -0.479141

预期的数据框:

                   0         1
  AC005839     1.xxxxxx  2.xxxxxx
  AC005840     xxxxxxxx  xxxxxxxx
  AC005840     xxxxxxxx  xxxxxxxx

公式是

dataframe3.loc['AC005839',0] = dataframe1.loc['AC005839',%age_paid_0.1]*dataframe2.loc[%age_paid_0.1,0]+dataframe1.loc['AC005839',%age_paid_0.2]*dataframe2.loc[%age_paid_0.2,0]+...+dataframe1.loc['AC005839',%age_paid_0.5]*dataframe2.loc[%age_paid_0.5,0]
dataframe3.loc['AC005839',1] = dataframe1.loc['AC005839',%age_paid_0.1]*dataframe2.loc[%age_paid_0.1,1]+dataframe1.loc['AC005839',%age_paid_0.2]*dataframe2.loc[%age_paid_0.2,1]+...+dataframe1.loc['AC005839',%age_paid_0.5]*dataframe2.loc[%age_paid_0.5,1]

任何帮助将不胜感激。基本上,我试图将变量转换为与主要组件相同的平面。预先感谢!

1 个答案:

答案 0 :(得分:0)

这是一个点积。由于您的索引/列标签匹配,因此您只需:

df1.dot(df2)