我正在使用stargazer
包来导出回归结果。以下是(删节的)结果:
==========================================================================================================================================================
Dependent variable:
-----------------------------------------------------------------------------------------------------------------------------
C-section Repeat C-section
(1) (2) (3) (4) (5) (6)
----------------------------------------------------------------------------------------------------------------------------------------------------------
Previous C-section 0.629*** 0.775*** 0.775***
(0.005) (0.005) (0.005)
----------------------------------------------------------------------------------------------------------------------------------------------------------
问题:最后一个变量(“上一个C剖视图”)应具有模型2、3、5和6的估算值。模型2的估算值是唯一缺失的模型。
我的感觉是问题与我的stargazer
参数有关,尤其是keep
。这是我的代码:
stargazer(lpmcsec1,lpmcsec2,lpmcsecp2,
lpmrc1,lpmrc2,lpmrcp2,
title="C-Sections",type="text",align=TRUE,dep.var.labels =
c("C-section","Repeat C-section"),
covariate.labels=c("Caps Noneconomic Damages","CN Lag 1","CN Lag 2","JSL Reform","JSL Lag 1","JSL Lag 2",
"Periodic Payments Reform (1)",
"Periodic Payments Reform (2)","PP Lag 1","PP Lag 2",
"Collateral Source Reform","CS Lag 1","CS Lag 2",
"Caps Punitive Damages","CP Lag 1","CP Lag 2","Previous C-section"),
keep=c(1:16,44),
out="allcsecmodels.txt")
对于keep=
,我使用数字向量。我已经计算了完整模型(3和6)中包含的变量数,“ Previous C-section”是输出中的第44个解释变量(我也通过比较.txt中的估算值对此进行了交叉检查输出与模型中的summary()
)。
(注意:尽管我已经从输出中删除了变量1:16,但我可以确认估算值可以正确显示并带有其各自的标签。)
那么,我在stargazer
和keep=
参数上做错什么了吗?
仅在您要确认我没有丢失模型2中的变量(或在模型2中其顺序不同)的情况下,以下分别是模型2和3的代码(其中“上一个c -section”是prec
):
model2<-felm(allc ~ r_cn+
r_js+
factor(r_pp)+r_cs+
r_cp+agelvl +
race + csex + border + plural + gestat + abrupc +
breechc + chyperc + phyperc + cordc + diabetesc +
eclampc + prevc + prolongc + renalc + rupc + prec| cnty + year|0|cnty)
model3<-felm(allc ~ r_cn+f1_cn+f2_cn+
r_js+f1_js+f2_js+
factor(r_pp)+f1_pp+f2_pp+r_cs+ f1_cs+f2_cs+
r_cp+f1_cp+f2_cp+ agelvl +
race + csex + border + plural + gestat + abrupc +
breechc + chyperc + phyperc + cordc + diabetesc +
eclampc + prevc + prolongc + renalc + rupc + prec| cnty + year|0|cnty)
感谢您的帮助!