不知道如何生成采样位置:

时间:2018-07-25 17:32:48

标签: niftynet

在统一采样器中如何生成尺寸?我尝试调试图像大小,似乎它可以在某些迭代中使用,而对其他迭代则无效。任何想法如何解决此问题。我的配置如下:

[自定义]

  • num_classes:14

  • output_prob:是

  • label_normalisation:是

  • softmax:正确

  • 最小采样率:0

  • 强制性标签:(0,1)

  • rand_samples:0

  • min_numb_labels:1

  • proba_connect:正确

  • evaluation_units:前景

  • 图片:(“图片”,)

  • 标签:('label',)

  • 重量:()

  • 采样器:()

  • 推断:()

名称:net_segment

[CONFIG_FILE]

  • 路径:/home/ubuntu/niftynet/extensions/deepmedic/deepmedic_all_task_renambed_labels.ini

[图像]

  • csv_file:

  • 搜索路径:/ home / ubuntu / med_deacthalon / Task_all_same_names / imagesTr_1

  • 文件名包含:()

  • 文件名不包含:('',)

  • interp_order:3

  • loader:无

  • pixdim:(1.0,1.0,1.0)

  • axcodes :(“ A”,“ R”,“ S”)

  • spatial_window_size:(51,51,51)

[LABEL]

-csv_file:

  • 搜索路径:/ home / ubuntu / med_deacthalon / Task_all_same_names / labelsTr_1

  • 文件名包含:()

  • 文件名不包含:('',)

  • interp_order:3

  • loader:无

  • pixdim:(1.0,1.0,1.0)

  • axcodes :(“ A”,“ R”,“ S”)

  • spatial_window_size:(9,9,9)

[系统]

  • cuda_devices:“”

  • num_threads:2

  • num_gpus:1

  • model_dir:/ home / ubuntu / models_nifty / deepmedic / all_task_same_name_rename_labels

  • dataset_split_file:./dataset_split.csv

  • 动作:训练

[网络]

  • 名称:Deepmedic

  • 激活功能:relu

  • 批处理大小:32

  • 衰变:0.0

  • reg_type:L2

  • volume_padding_size:(21,21,21)

  • volume_padding_mode:最小

  • window_sampling:统一

  • 队列长度:128

  • multimod_foreground_type:和

  • histogram_ref_file:histogram_standardisation_alltask.txt

  • norm_type:百分位数

  • 临界值:(0.01,0.99)

  • 前景类型:otsu_plus

  • 归一化:错误

  • 美白:是

  • normalise_foreground_only:正确

  • weight_initializer:he_normal

  • bias_initializer:零

  • keep_prob:1.0

  • weight_initializer_args:{}

  • bias_initializer_args:{}

[培训]

  • 优化器:亚当

  • sample_per_volume:32

  • rotation_angle:(-10.0,10.0)

  • rotation_angle_x:()

  • rotation_angle_y:()

  • rotation_angle_z:()

  • scaling_percentage:(-10.0,10.0)

  • random_flipping_axes:-1

  • do_elastic_deformation:False

  • num_ctrl_points:4

  • deformation_sigma:15

  • 比例变形:0.5

  • lr:0.001

  • loss_type:骰子

  • starting_iter:0

  • save_every_n:45

  • tensorboard_every_n:20

  • max_iter:10

  • max_checkpoints:20

  • validation_every_n:-1

  • validation_max_iter:1

  • exclude_fraction_for_validation:0.0

  • exclude_fraction_for_inference:0.0

[推断]

  • spatial_window_size:(57,57,57)

  • inference_iter:-1

  • dataset_to_infer:

  • save_seg_dir:./deepmedic/alltask_newname

  • output_postfix:_niftynet_out

  • output_interp_order:0

  • 边界:(36,36,36)

CRITICAL:niftynet: Don't know how to generate sampling locations: Spatial dimensions of the grouped input sources are not consistent. {(477, 451, 187), (391, 369, 147)} Exception in thread Thread-2: Traceback (most recent call last): File "/home/ubuntu/anaconda3/envs/python3/lib/python3.6/threading.py", line 916, in _bootstrap_inner self.run() File "/home/ubuntu/anaconda3/envs/python3/lib/python3.6/threading.py", line 864, in run self._target(*self._args, **self._kwargs) File "/home/ubuntu/niftynet/NiftyNet/niftynet/engine/image_window_buffer.py", line 148, in _push for output_dict in self(): File "/home/ubuntu/niftynet/NiftyNet/niftynet/engine/sampler_uniform.py", line 81, in layer_op self.window.n_samples) File "/home/ubuntu/niftynet/NiftyNet/niftynet/engine/sampler_uniform.py", line 151, in _spatial_coordinates_generator _infer_spatial_size(img_sizes, win_sizes) File "/home/ubuntu/niftynet/NiftyNet/niftynet/engine/sampler_uniform.py", line 238, in _infer_spatial_size raise NotImplementedError NotImplementedError

1 个答案:

答案 0 :(得分:0)

此问题已解决:https://github.com/NifTK/NiftyNet/issues/170

在摘要中,当在配置文件中设置pixdim时,图像和标签的标题中应存储相同的体素间距。