以下是使用ggridges
的可重现示例:
data(iris)
library(ggplot2)
library(ggridges)
library(RColorBrewer)
cols <- brewer.pal(3, "BrBG")
# Plot with one color per group
ggplot(iris, aes(Sepal.Length, as.factor(Species))) +
geom_density_ridges(aes(fill = as.factor(Species))) +
scale_fill_manual("Sepal", values = cols)
# Plot with one gradient
ggplot(iris, aes(Sepal.Length, as.factor(Species))) +
geom_density_ridges_gradient(aes(fill = ..x..)) +
scale_fill_gradient2(low = "grey", high = cols[1], midpoint = 5)
我基本上想结合两个图。我还想为每种密度指定一个特定的midpoint
值。
答案 0 :(得分:0)
这有点不雅致,但是您可以在第一个代码中向geom_density_gradient
添加第二个调用,将颜色手动设置为白色,但是像这样映射alpha:aes(alpha=Sepal.length)) +scale_alpha_continuous()
答案 1 :(得分:0)
出于好奇,我想出了以下解决方法,但就数据可视化而言,我认为这不是真正的好习惯。在密度图中只有一个变化的梯度足够不稳定。有多个不同的人不会更好。请不要使用它。
准备工作:
ggplot(iris, aes(Sepal.Length, as.factor(Species))) +
geom_density_ridges_gradient()
# plot normally & read off the joint bandwidth from the console message (0.181 in this case)
# split data based on the group variable, & define desired gradient colours / midpoints
# in the same sequential order.
split.data <- split(iris, iris$Species)
split.grad.low <- c("blue", "red", "yellow") # for illustration; please use prettier colours
split.grad.high <- cols
split.grad.midpt <- c(4.5, 6.5, 7) # for illustration; please use more sensible points
# create a separate plot for each group of data, specifying the joint bandwidth from the
# full chart.
split.plot <- lapply(seq_along(split.data),
function(i) ggplot(split.data[[i]], aes(Sepal.Length, Species)) +
geom_density_ridges_gradient(aes(fill = ..x..),
bandwidth = 0.181) +
scale_fill_gradient2(low = split.grad.low[i], high = split.grad.high[i],
midpoint = split.grad.midpt[i]))
图:
# Use layer_data() on each plot to get the calculated values for x / y / fill / etc,,
# & create two geom layers from each, one for the gradient fill & one for the ridgeline
# on top. Add them to a new ggplot() object in reversed order, because we want the last
# group to be at the bottom, overlaid by the others where applicable.
ggplot() +
lapply(rev(seq_along(split.data)),
function(i) layer_data(split.plot[[i]]) %>%
mutate(xmin = x, xmax = lead(x), ymin = ymin + i - 1, ymax = ymax + i - 1) %>%
select(xmin, xmax, ymin, ymax, height, fill) %>%
mutate(sequence = i) %>%
na.omit() %>%
{list(geom_rect(data = .,
aes(xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax, fill = fill)),
geom_line(data = .,
aes(x = xmin, y = ymax)))}) +
# Label the y-axis labels based on the original data's group variable
scale_y_continuous(breaks = seq_along(split.data), labels = names(split.data)) +
# Use scale_fill_identity, since all the fill values have already been calculated.
scale_fill_identity() +
labs(x = "Sepal Length", y = "Species")
请注意,此方法不会创建填充图例。如果需要,可以通过split.plot
从get_legend
的各个图中检索填充图例,并通过plot_grid
将其添加到上方的图中(两个函数都来自cowplot
包),但这就像在已经很奇怪的可视化选择中增加了装饰……