我在spark数据框中有5亿行。我对使用sample_n
中的dplyr
很感兴趣,因为它可以让我明确指定所需的样本量。如果要使用sparklyr::sdf_sample()
,则必须首先计算sdf_nrow()
,然后创建数据sample_size / nrow
的指定分数,然后将该分数传递给sdf_sample
。没什么大不了,但是sdf_nrow()
可能需要一段时间才能完成。
因此,直接使用dplyr::sample_n()
是理想的。但是,经过一些测试,看起来sample_n()
并不是随机的。实际上,结果与head()
相同!如果该函数只是返回前n
行,而不是随机采样行,那将是一个主要问题。
其他人可以确认吗? sdf_sample()
是我最好的选择吗?
# install.packages("gapminder")
library(gapminder)
library(sparklyr)
library(purrr)
sc <- spark_connect(master = "yarn-client")
spark_data <- sdf_import(gapminder, sc, "gapminder")
> # Appears to be random
> spark_data %>% sdf_sample(fraction = 0.20, replace = FALSE) %>% summarise(sample_mean = mean(lifeExp))
# Source: lazy query [?? x 1]
# Database: spark_connection
sample_mean
<dbl>
1 58.83397
> spark_data %>% sdf_sample(fraction = 0.20, replace = FALSE) %>% summarise(sample_mean = mean(lifeExp))
# Source: lazy query [?? x 1]
# Database: spark_connection
sample_mean
<dbl>
1 60.31693
> spark_data %>% sdf_sample(fraction = 0.20, replace = FALSE) %>% summarise(sample_mean = mean(lifeExp))
# Source: lazy query [?? x 1]
# Database: spark_connection
sample_mean
<dbl>
1 59.38692
>
>
> # Appears to be random
> spark_data %>% sample_frac(0.20) %>% summarise(sample_mean = mean(lifeExp))
# Source: lazy query [?? x 1]
# Database: spark_connection
sample_mean
<dbl>
1 60.48903
> spark_data %>% sample_frac(0.20) %>% summarise(sample_mean = mean(lifeExp))
# Source: lazy query [?? x 1]
# Database: spark_connection
sample_mean
<dbl>
1 59.44187
> spark_data %>% sample_frac(0.20) %>% summarise(sample_mean = mean(lifeExp))
# Source: lazy query [?? x 1]
# Database: spark_connection
sample_mean
<dbl>
1 59.27986
>
>
> # Does not appear to be random
> spark_data %>% sample_n(300) %>% summarise(sample_mean = mean(lifeExp))
# Source: lazy query [?? x 1]
# Database: spark_connection
sample_mean
<dbl>
1 57.78434
> spark_data %>% sample_n(300) %>% summarise(sample_mean = mean(lifeExp))
# Source: lazy query [?? x 1]
# Database: spark_connection
sample_mean
<dbl>
1 57.78434
> spark_data %>% sample_n(300) %>% summarise(sample_mean = mean(lifeExp))
# Source: lazy query [?? x 1]
# Database: spark_connection
sample_mean
<dbl>
1 57.78434
>
>
>
> # === Test sample_n() ===
> sample_mean <- list()
>
> for(i in 1:20){
+
+ sample_mean[i] <- spark_data %>% sample_n(300) %>% summarise(sample_mean = mean(lifeExp)) %>% collect() %>% pull()
+
+ }
>
>
> sample_mean %>% flatten_dbl() %>% mean()
[1] 57.78434
> sample_mean %>% flatten_dbl() %>% sd()
[1] 0
>
>
> # === Test head() ===
> spark_data %>%
+ head(300) %>%
+ pull(lifeExp) %>%
+ mean()
[1] 57.78434
答案 0 :(得分:2)
不是。如果检查执行计划(optimizedPlan
功能已定义为here),您会发现它只是一个限制:
spark_data %>% sample_n(300) %>% optimizedPlan()
<jobj[168]>
org.apache.spark.sql.catalyst.plans.logical.GlobalLimit
GlobalLimit 300
+- LocalLimit 300
+- InMemoryRelation [country#151, continent#152, year#153, lifeExp#154, pop#155, gdpPercap#156], true, 10000, StorageLevel(disk, memory, deserialized, 1 replicas), `gapminder`
+- Scan ExistingRDD[country#151,continent#152,year#153,lifeExp#154,pop#155,gdpPercap#156]
show_query
进一步证实了这一点:
spark_data %>% sample_n(300) %>% show_query()
<SQL>
SELECT *
FROM (SELECT *
FROM `gapminder` TABLESAMPLE (300 rows) ) `hntcybtgns`
和可视化的执行计划:
最后,如果您选中Spark source,您会发现这种情况是通过简单的LIMIT
实现的:
case ctx: SampleByRowsContext =>
Limit(expression(ctx.expression), query)
我相信这种语义是从Hive where equivalent query takes n first rows from each input split继承的。
实际上,获取精确大小的样本非常昂贵,除非绝对必要,否则应避免使用(与大LIMITS
相同)。