我有一个使用TensorHub text_embedding列的估算器,如下所示:
my_dataframe = pandas.DataFrame(columns=["title"})
# populate data
labels = []
# populate labels with 0|1
embedded_text_feature_column = hub.text_embedding_column(
key="title"
,module_spec="https://tfhub.dev/google/nnlm-en-dim128-with-normalization/1")
estimator = tf.estimator.LinearClassifier(
feature_columns = [ embedded_text_feature_column ]
,optimizer=tf.train.FtrlOptimizer(
learning_rate=0.1
,l1_regularization_strength=1.0
)
,model_dir=model_dir
)
estimator.train(
input_fn=tf.estimator.inputs.pandas_input_fn(
x=my_dataframe
,y=labels
,batch_size=128
,num_epochs=None
,shuffle=True
,num_threads=5
)
,steps=5000
)
export(estimator, "/tmp/my_model")
如何导出并提供模型服务,以便它接受字符串作为预测的输入?我有一个serving_input_receiver_fn
,如下,并尝试了很多,但是我对它的外观感到很困惑,以便可以使用它(例如,使用save_model_cli)并用标题字符串调用它(或简单的JSON结构)作为输入。
def export(estimator, dir_path):
def serving_input_receiver_fn():
feature_spec = tf.feature_column.make_parse_example_spec(hub.text_embedding_column(
key="title"
,module_spec="https://tfhub.dev/google/nnlm-en-dim128-with-normalization/1"))
return tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec)
estimator.export_savedmodel(
export_dir_base=dir_path
,serving_input_receiver_fn=serving_input_receiver_fn()
)
答案 0 :(得分:4)
If you want to feed raw strings, you might want to consider using the raw input receiver. This code:
feature_placeholder = {'title': tf.placeholder('string', [1], name='title_placeholder')}
serving_input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn(feature_placeholder)
estimator.export_savedmodel(dir_path, serving_input_fn)
will give you a SavedModel
with the following input specification according to the SavedModel
CLI:
saved_model_cli show --dir ./ --tag_set serve --signature_def serving_default
The given SavedModel SignatureDef contains the following input(s):
inputs['inputs'] tensor_info:
dtype: DT_STRING
shape: (-1)
name: title_placeholder_1:0
The given SavedModel SignatureDef contains the following output(s):
outputs['classes'] tensor_info:
dtype: DT_STRING
shape: (-1, 2)
name: linear/head/Tile:0
outputs['scores'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 2)
name: linear/head/predictions/probabilities:0
You can provide a python expression to the CLI to serve an input to the model to validate that it works:
saved_model_cli run --dir ./ --tag_set serve --signature_def \
serving_default --input_exprs "inputs=['this is a test sentence']"
Result for output key classes:
[[b'0' b'1']]
Result for output key scores:
[[0.5123377 0.4876624]]