import numpy as np
x = ([1,2,3,3])
y = ([1,2,3])
z = ([6,6,1,2,9,9])
(仅正值) 在每个数组中,我需要返回最常用的值,或者,如果值出现的次数相同,则返回最小值。 这是家庭作业,除numpy外我什么也不能使用。
输出:
f(x) = 3,
f(y) = 1,
f(z) = 6
答案 0 :(得分:1)
答案 1 :(得分:1)
对于一个numpy独占解决方案,类似这样的方法将起作用:
occurances = np.bincount(x)
print (np.argmax(occurances))
如果列表中为负数,则上述方法将无效。因此,为了解决这种情况,请使用:
not_required, counts = np.unique(x, return_counts=True)
x=np.array(x)
if (x >= 0).all():
print(not_required[np.argmax(counts)])
else:
print(not_required[np.argmax(counts)])
答案 2 :(得分:0)
没有numpy
n_dict = {}
for k in x:
try:
n_dict[k] += 1
except KeyError:
n_dict[k] = 1
rev_n_dict = {}
for k in n_dict:
if n_dict[k] not in rev_n_dict:
rev_n_dict[n_dict[k]] = [k]
else:
rev_n_dict[n_dict[k]].append(k)
local_max = 0
for k in rev_n_dict:
if k > local_max:
local_max = k
if len(rev_n_dict[local_max]) > 0:
print (min(rev_n_dict[local_max]))
else:
print (rev_n_dict[local_max])
答案 3 :(得分:0)
要添加到以前的结果中,可以使用collections.Counter
对象:
my_array = [3,24,543,3,1,6,7,8,....,223213,13213]
from collections import Counter
my_counter = Counter( my_array)
most_common_value = my_counter.most_common(1)[0][0]
答案 4 :(得分:0)
这很简单,但肯定不是很漂亮。我使用的变量名将随注释一起自我解释。随时问是否有疑问。
import numpy as np
x=([6,6,1,2,9,9])
def tester(x):
not_required, counts = np.unique(x, return_counts=True)
x=np.array(x)
if (x >= 0).all():
highest_occurance=[not_required[np.argmax(counts)]]
number_of_counts=np.max(counts)
else:
highest_occurance=not_required[np.argmax(counts)]
number_of_counts=np.max(counts)
return highest_occurance,number_of_counts
most_abundant,first_test_counts=(tester(x))
new_x=[vals for vals in x if vals not in most_abundant]
second_most_abundant,second_test_counts=(tester(new_x))
if second_test_counts==first_test_counts:
print("Atleast two elements have the same number of counts",most_abundant," and", second_most_abundant, "have %s"%first_test_counts,"occurances")
else:
print("%s occurrs for the max of %s times"%(most_abundant,first_test_counts))
我们还可以循环检查是否有两个以上元素同时出现,而不是在仅查看两个元素的特定情况下使用if else