(这是this问题的扩展)
嗨
我正在尝试使用新数据更新lmplot,但由于它们具有自己的特性,因此无法找到将其连接到现有图形/轴的方法。到目前为止,我已经尝试过:
%matplotlib notebook
import matplotlib.animation as animation
import numpy as np
#fig, ax = plt.subplots(1,1,figsize=(5,4))
df = get_data()
g = sns.lmplot( x='Mean', y='Variance', data=df, fit_reg=False, hue='Size', legend=False, palette=cmap)
def get_data():
takeRandomSample(population, popSize, popVar)
current_elem = len(sampleStats)-1
current_size = sampleStats[current_elem][0]
current_mean = sampleStats[current_elem][1]
current_var = sampleStats[current_elem][2]
data = {'Size' : current_size, 'Mean' : current_mean, 'Variance' : current_var}
df = pd.DataFrame(data, index=[0])
return df
def prep_axes(g):
g.set(xlim=(0, 20), ylim=(0, 100), xticks=range(0,21))
ax = g.axes[0,0]
ax.axvline(x=popMean, color='#8c8ca0', ls='dashed')
ax.axhline(y=popVar, color='#8c8ca0', ls='dashed')
ax.set_title('Sample Statistics :{}'.format(i))
ax.set_facecolor(backgroundColour)
def animate(i):
df = get_data()
g = sns.lmplot( x='Mean', y='Variance', data=df, fit_reg=False, hue='Size', legend=False, palette=cmap)
prep_axes(g, i)
# initialize samples
sampleStats = []
plt.tight_layout()
ani = animation.FuncAnimation(g.fig, animate, frames = np.arange(1,100), interval=100)
问题:
1.这只会产生一个静态图,因为我找不到更新现有g并在相同g的图形lmsplot上重新绘图的方法。动画功能正在创建新的g
2.我不得不不必要地初始化一次,以使g对象将g.fig传递给funcanimation,但由于第1点的原因,它也无济于事。
我们如何使用lmplot制作动画?由于色相功能,我想使用它而不是常规的matplotlib。
我也尝试直接使用facetgrid(并在g.map中传递lmplot),但这也无济于事。
答案 0 :(得分:1)
作为记录,如果您没有任何方面并且不关心回归,则可以按照以下方法为lmplot()
设置动画:
import seaborn as sns; sns.set(color_codes=True)
tips = sns.load_dataset("tips")
g = sns.lmplot(x="total_bill", y="tip", hue="smoker", data=tips, fit_reg=False)
fig = g.fig
ax = g.axes[0,0]
scatters = [c for c in ax.collections if isinstance(c, matplotlib.collections.PathCollection)]
txt = ax.text(0.1,0.9,'frame=0', transform=ax.transAxes)
def animate(i):
for c in scatters:
# do whatever do get the new data to plot
x = np.random.random(size=(50,1))*50
y = np.random.random(size=(50,1))*10
xy = np.hstack([x,y])
# update PathCollection offsets
c.set_offsets(xy)
txt.set_text('frame={:d}'.format(i))
return scatters+[txt]
ani = matplotlib.animation.FuncAnimation(fig, animate, frames=10, blit=True)
但是,在这种情况下,您可以通过不完全使用lmplot来以更直接的方式获得几乎完全相同的结果:
import seaborn as sns; sns.set(color_codes=True)
tips = sns.load_dataset("tips")
fig, ax = plt.subplots()
scatters = []
for g,d in tips.groupby('smoker'):
s = ax.scatter(x="total_bill", y="tip", data=tips, label=g)
scatters.append(s)
ax.legend(bbox_to_anchor=(1.,1.), loc=1)
txt = ax.text(0.1,0.9,'frame=0', transform=ax.transAxes)
def animate(i):
for c in scatters:
x = np.random.random(size=(50,1))*50
y = np.random.random(size=(50,1))*10
xy = np.hstack([x,y])
c.set_offsets(xy)
txt.set_text('frame={:d}'.format(i))
return scatters+[txt]
ani = matplotlib.animation.FuncAnimation(fig, animate, frames=10, blit=True)
从上面的代码中,很容易将新值附加到以前的数据中,而不是替换所有要点:
import seaborn as sns; sns.set(color_codes=True)
tips = sns.load_dataset("tips")
fig, ax = plt.subplots()
scatters = []
for g,d in tips.groupby('smoker'):
s = ax.scatter([], [], label=g)
scatters.append(s)
ax.legend(bbox_to_anchor=(1.,1.), loc=1)
txt = ax.text(0.1,0.9,'frame=0', transform=ax.transAxes)
ax.set_xlim((0,60))
ax.set_ylim((0,15))
def animate(i, df, x, y, hue):
new_data = df.sample(20) # get new data here
for c,(groupname,subgroup) in zip(scatters,new_data.groupby(hue)):
xy = c.get_offsets()
xy = np.append(xy,subgroup[[x,y]].values, axis=0)
c.set_offsets(xy)
txt.set_text('frame={:d}'.format(i))
return scatters+[txt]
ani = matplotlib.animation.FuncAnimation(fig, animate, fargs=(tips, "total_bill", "tip", 'smoker'), frames=10, blit=True)