我有一个数据集,其中有NaN
个数据。我正在使用熊猫从文件中提取数据,并使用numpy对其进行处理。这是我读取数据的代码:
import pandas as pd
import numpy as np
def makeArray(band):
"""
Takes as argument a string as the name of a wavelength band.
Converts the list of magnitudes in that band into a numpy array,
replacing invalid values (where invalid == -999) with NaNs.
Returns the array.
"""
array_name = band + '_mag'
array = np.array(df[array_name])
array[array==-999]=np.nan
return array
# Read data file
fields = ['no', 'NED', 'z', 'obj_type','S_21', 'power', 'SI_flag',
'U_mag', 'B_mag', 'V_mag', 'R_mag', 'K_mag', 'W1_mag',
'W2_mag', 'W3_mag', 'W4_mag', 'L_UV', 'Q', 'flag_uv']
magnitudes = ['U_mag', 'B_mag', 'V_mag', 'R_mag', 'K_mag', 'W1_mag',
'W2_mag', 'W3_mag', 'W4_mag']
df = pd.read_csv('todo.dat', sep = ' ',
names = fields, index_col = False)
# Define axes for processing
redshifts = np.array(df['z'])
y = np.log(makeArray('K'))
mask = np.isnan(y)
我想一个最小的工作示例是:
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
randomNumberGenerator = np.random.RandomState(1000)
x = 4 * randomNumberGenerator.rand(100)
y = 4 * x - 1+ randomNumberGenerator.randn(100)
y[50] = np.nan
slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
fit = slope*x + intercept
plt.scatter(x, y)
plt.plot(x, fit)
plt.show()
注释MWE中的y[50] = np.nan
行会生成一个漂亮的图形,但是包含它会产生与我的实际数据相同的错误消息:
C:\Users\Jeremy\Anaconda3\lib\site-packages\scipy\stats\_distn_infrastructure.py:879: RuntimeWarning: invalid value encountered in greater
return (self.a < x) & (x < self.b)
C:\Users\Jeremy\Anaconda3\lib\site-packages\scipy\stats\_distn_infrastructure.py:879: RuntimeWarning: invalid value encountered in less
return (self.a < x) & (x < self.b)
C:\Users\Jeremy\Anaconda3\lib\site-packages\scipy\stats\_distn_infrastructure.py:1818: RuntimeWarning: invalid value encountered in less_equal
cond2 = cond0 & (x <= self.a)
实际数据帧的摘要:
no NED z obj_type S_21 power SI_flag U_mag B_mag V_mag R_mag K_mag W1_mag W2_mag W3_mag W4_mag L_UV Q flag_uv
1 SDSSJ000005.95+145310.1 2.499 * 0.0 0.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 0.0 0.0 NONE
4 SDSSJ000009.27+020621.9 1.432 UvS 0.0 0.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 0.0 0.0 NONE
5 SDSSJ000009.38+135618.4 2.239 QSO 0.0 0.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 0.0 0.0 NONE
6 SDSSJ000011.37+150335.7 2.18 * 0.0 0.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 0.0 0.0 NONE
11 SDSSJ000030.64-064100.0 2.606 QSO 0.0 0.0 -999.0 -999.0 -999.0 -999.0 15.46 -999.0 -999.0 -999.0 -999.0 23.342 56.211000000000006 UV
15 SDSSJ000033.05+114049.6 0.73 UvS 0.0 0.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 0.0 0.0 NONE
27 LBQS2358+0038 0.95 QSO 0.0 0.0 17.342 18.483 18.203 17.825 -999.0 -999.0 -999.0 -999.0 -999.0 23.301 56.571999999999996 UV
我正在针对_mag
绘制每个z
列,并且试图计算并绘制一个线性回归,不包括NaN
。
我已经尝试过numpy.linalg
,numpy.poly
,scipy.stats.linregress
和statsmodels.api
,但似乎他们中的任何一个都不能轻易处理{{1} } s。我在SE上发现的其他问题正在引导我转圈。
如何像MWE所示那样在数据顶部绘制OLS回归拟合?
答案 0 :(得分:2)
您可以使用df.dropna()
查看以下链接:pandas.DataFrame.dropna
答案 1 :(得分:1)
您必须将数据转换为数据框,以删除包含至少一个NAN值的整列。这样,您将不会收到前面收到的警告。试试这个,
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import pandas as pd
randomNumberGenerator = np.random.RandomState(1000)
x = 4 * randomNumberGenerator.rand(100)
y = 4 * x - 1+ randomNumberGenerator.randn(100)
y[50] = np.nan
df1 = pd.DataFrame({'x': x})
df1['y'] = y
df1 = df1.dropna()
x = df1.x
y = df1.y
slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)
fit = slope*x + intercept
plt.scatter(x, y)
plt.plot(x, fit)
plt.show()