我可以使用train_test_split()
而不是通过test_size
和{{1来基于索引值将数据集分为训练集和测试集吗(每10行作为训练数据,其余作为测试数据) }}参数?
答案 0 :(得分:2)
确定,可以使用::n
,它将返回您指定的每n个,这是示例:
df=pd.DataFrame({'number': np.arange(100), })
如果我们想每10个获取值:
print(df[::10])
结果:
number
0 0
10 10
20 20
30 30
40 40
50 50
60 60
70 70
80 80
90 90
您可以使用numpy数组做同样的事情:
np.arange(100)
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99])
每9个值:
np.arange(100)[::9]
输出:
array([ 0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99])
编辑:
def getting_train_val(dataframe, interval=10):
x_valid = dataframe[::interval]
x_test = dataframe[~ dataframe(dataframe[::interval])].dropna()
return x_valid, x_test