清理R中的列表列表

时间:2018-07-21 17:04:03

标签: r list purrr

R中的多级列表有问题。这是我的数据结构的一个小例子。

library(purrr)

> example
[[1]]
[[1]][[1]]
  id.value id.name    value
1        2     Tim -1.68956
2        4    Jack  1.23950
3        5    Mary -0.10897
4        3  Joseph -0.11724
5        1  Kermit  0.18308

[[1]][[2]]
  id.value id.name    value
1        6     Tim  0.50381
2        2    Jack  2.52834
3        1    Mary  0.54910
4        4  Joseph  0.23821
5        5  Kermit -1.04889
6        3     Red  1.29476

[[1]][[3]]
  id.value id.name    value
1        4     Tim -0.47279
2        1    Jack -1.06782
3        2    Mary -0.21797
4        3  Joseph -1.02600
5        5  Kermit -0.72889

[[1]]$main.id
[1] 123


[[2]]
[[2]][[1]]
  id.value id.name    value
1        2     Tim -1.16554
2        4    Jack -0.81852
3        1    Mary  0.68494
4        3  Joseph -0.32006
5        5  Kermit -1.31152

[[2]][[2]]
  id.value id.name     value
1        2     Tim  0.821581
2        4    Jack  0.688640
3        5    Mary  0.553918
4        3  Joseph -0.061912
5        1  Kermit -0.305963

[[2]][[3]]
  id.value id.name    value
1        2     Tim  0.80018
2        1    Jack -0.16393
3        4    Mary  1.24292
4        5  Joseph -0.93439
5        3  Kermit  0.39371

[[2]]$main.id
[1] 234

所以我理解的结构是列表列表列表,其中包括data.frame和法线向量。通常,我用purrr map从中得到一些好处,但是现在我不够深入。最终结果应该看起来像result(很抱歉,如果某些值不合适,但是手动执行容易出错)。

> head(result, 2)
# A tibble: 2 x 5
  list.id sub.list.id id.value id.name  value
    <dbl>       <dbl>    <dbl> <chr>    <dbl>
1     123           1        2 Tim     -0.333
2     123           1        4 Jack    -1.02 

> tail(result, 2)
# A tibble: 2 x 5
  list.id sub.list.id id.value id.name value
    <dbl>       <dbl>    <dbl> <chr>   <dbl>
1     234           3        5 Joseph  0.548
2     234           3        3 Kermit  0.239

list.id = main.id,我亲身体验map_dbl(example, c("main.id"))

sub.list.id =该列表列表中该列表的最后一个列表号。在此示例中,每个主列表从1-> 3开始运行。

[[1]]
[[1]]**[[1]]**
  id.value id.name      value
1        2     Tim -1.6895557
2        4    Jack  1.2394959
3        5    Mary -0.1089660
4        3  Joseph -0.1172420
5        1  Kermit  0.1830826

其他变量应该可以自我解释。

我通常使用purrr map,但是如果有其他好的方法来解决这些复杂的列表,我也会开放。我尝试了不公开,但它完全破坏了结构,我认为不需要。我目前正在尝试bind_cols(使用data.frame和vector)->,然后尝试使用bind_rows进行.id,但是还没有成功完成任何有意义的事情。

数据:

example <- list(list(structure(list(id = structure(list(value = c(2L, 4L, 
                5L, 3L, 1L), name = c("Tim", "Jack", "Mary", "Joseph", "Kermit"
                )), class = "data.frame", row.names = c(NA, 5L)), value = c(-1.6895556640288, 
                1.23949588599841, -0.108965972315484, -0.117241961787958, 0.183082613838439
                )), class = "data.frame", row.names = c(NA, 5L)), structure(list(
                    id = structure(list(value = c(6L, 2L, 1L, 4L, 5L, 3L), name = c("Tim", 
                    "Jack", "Mary", "Joseph", "Kermit", "Red")), class = "data.frame", row.names = c(NA, 
                    6L)), value = c(0.503812447155119, 2.52833655070411, 0.549096735635542, 
                    0.238212920794043, -1.04889314358654, 1.29476325458416)), class = "data.frame", row.names = c(NA, 
                6L)), structure(list(id = structure(list(value = c(4L, 1L, 2L, 
                3L, 5L), name = c("Tim", "Jack", "Mary", "Joseph", "Kermit")), class = "data.frame", row.names = c(NA, 
                5L)), value = c(-0.472791407727934, -1.06782370598685, -0.217974914658295, 
                -1.02600444830724, -0.72889122929114)), class = "data.frame", row.names = c(NA, 
                5L)), main.id = 123), list(structure(list(id = structure(list(
                    value = c(2L, 4L, 1L, 3L, 5L), name = c("Tim", "Jack", "Mary", 
                    "Joseph", "Kermit")), class = "data.frame", row.names = c(NA, 
                5L)), value = c(-1.16554484788995, -0.818515722513129, 0.684936077925063, 
                -0.320056419276819, -1.31152241139676)), class = "data.frame", row.names = c(NA, 
                5L)), structure(list(id = structure(list(value = c(2L, 4L, 5L, 
                3L, 1L), name = c("Tim", "Jack", "Mary", "Joseph", "Kermit")), class = "data.frame", row.names = c(NA, 
                5L)), value = c(0.821581081637487, 0.688640254100091, 0.553917653537589, 
                -0.0619117105767217, -0.305962663739917)), class = "data.frame", row.names = c(NA, 
                5L)), structure(list(id = structure(list(value = c(2L, 1L, 4L, 
                5L, 3L), name = c("Tim", "Jack", "Mary", "Joseph", "Kermit")), class = "data.frame", row.names = c(NA, 
                5L)), value = c(0.800176865835429, -0.163930968642975, 1.24291877493732, 
                -0.93438505805516, 0.393708652215792)), class = "data.frame", row.names = c(NA, 
                5L)), main.id = 234))

预期输出:

result <- structure(list(list.id = c(123, 123, 123, 123, 123, 123, 123, 
            123, 123, 123, 123, 123, 123, 123, 123, 123, 234, 234, 234, 234, 
            234, 234, 234, 234, 234, 234, 234, 234, 234, 234, 234), sub.list.id = c(1, 
            1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 2, 
            2, 2, 2, 2, 3, 3, 3, 3, 3), id.value = c(2, 4, 5, 3, 1, 6, 2, 
            1, 4, 5, 3, 4, 1, 2, 3, 5, 2, 4, 1, 3, 5, 2, 4, 5, 3, 1, 2, 1, 
            4, 5, 3), id.name = c("Tim", "Jack", "Mary", "Joseph", "Kermit", 
            "Tim", "Jack", "Mary", "Joseph", "Kermit", "Red", "Tim", "Jack", 
            "Mary", "Joseph", "Kermit", "Tim", "Jack", "Mary", "Joseph", 
            "Kermit", "Tim", "Jack", "Mary", "Joseph", "Kermit", "Tim", "Jack", 
            "Mary", "Joseph", "Kermit"), value = c(-0.33320738366942, -1.01857538310709, 
            -1.07179122647558, 0.303528641404258, 0.448209778629426, 0.0530042267305041, 
            0.922267467879737, 2.05008468562714, -0.491031166056535, -2.30916887564081, 
            1.00573852446226, -0.709200762582393, -0.688008616467358, 1.0255713696967, 
            -0.284773007051009, -1.22071771225454, 0.18130347974915, -0.138891362439045, 
            0.00576418589988693, 0.38528040112633, -0.370660031792409, 0.644376548518833, 
            -0.220486561818751, 0.331781963915697, 1.09683901314935, 0.435181490833803, 
            -0.325931585531227, 1.14880761845109, 0.993503855962119, 0.54839695950807, 
            0.238731735111441)), class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA, 
            31L))

3 个答案:

答案 0 :(得分:2)

这有点毛茸茸,tidyr::unnest似乎由于某种原因无法正常工作。尽管如此,

library(purrr)

example %>% 
    set_names(map_chr(., 'main.id')) %>%    # store IDs as names for easy recovery
    map(keep, is.data.frame) %>%    # drop now superfluous `main.id` elements
    map_dfr(    # for each sublist
        function(sublist) { 
            map_dfr(    # for each element
                sublist, 
                ~dplyr::bind_cols(set_names(.x$id, ~paste0('id.', .x)), .x[2]),    # unnest
                .id = 'sublist.id'    # simplify sublist to data frame, adding element ID column
            )
        }, 
        .id = 'list.id') %>%    # simplify list to data frame, adding element ID column
    readr::type_convert()    # fix types of data stored as names
#>    list.id sublist.id id.value id.name       value
#> 1      123          1        2     Tim -1.68955566
#> 2      123          1        4    Jack  1.23949589
#> 3      123          1        5    Mary -0.10896597
#> 4      123          1        3  Joseph -0.11724196
#> 5      123          1        1  Kermit  0.18308261
#> 6      123          2        6     Tim  0.50381245
#> 7      123          2        2    Jack  2.52833655
#> 8      123          2        1    Mary  0.54909674
#> 9      123          2        4  Joseph  0.23821292
#> 10     123          2        5  Kermit -1.04889314
#> 11     123          2        3     Red  1.29476325
#> 12     123          3        4     Tim -0.47279141
#> 13     123          3        1    Jack -1.06782371
#> 14     123          3        2    Mary -0.21797491
#> 15     123          3        3  Joseph -1.02600445
#> 16     123          3        5  Kermit -0.72889123
#> 17     234          1        2     Tim -1.16554485
#> 18     234          1        4    Jack -0.81851572
#> 19     234          1        1    Mary  0.68493608
#> 20     234          1        3  Joseph -0.32005642
#> 21     234          1        5  Kermit -1.31152241
#> 22     234          2        2     Tim  0.82158108
#> 23     234          2        4    Jack  0.68864025
#> 24     234          2        5    Mary  0.55391765
#> 25     234          2        3  Joseph -0.06191171
#> 26     234          2        1  Kermit -0.30596266
#> 27     234          3        2     Tim  0.80017687
#> 28     234          3        1    Jack -0.16393097
#> 29     234          3        4    Mary  1.24291877
#> 30     234          3        5  Joseph -0.93438506
#> 31     234          3        3  Kermit  0.39370865

答案 1 :(得分:1)

我对tidyverse解决方案的看法:

library(tidyverse):

map_dfr(example, 
    ~ cbind(.['main.id'],            # put main_id as our first column
             map_dfr(.[-length(.)],  # build the rest of the table from previous elements
             ~bind_cols(             # for each of them takout manually .id col and rename
               rename_all(.$id,~paste0("id.",.)),
               .['value']),
             .id = "sub.list.id")))  # the .id parameter will do the required indexing
#    main.id sub.list.id id.value id.name       value
# 1      123           1        2     Tim -1.68955566
# 2      123           1        4    Jack  1.23949589
# 3      123           1        5    Mary -0.10896597
# 4      123           1        3  Joseph -0.11724196
# 5      123           1        1  Kermit  0.18308261
# 6      123           2        6     Tim  0.50381245
# 7      123           2        2    Jack  2.52833655
# 8      123           2        1    Mary  0.54909674
# 9      123           2        4  Joseph  0.23821292
# 10     123           2        5  Kermit -1.04889314
# 11     123           2        3     Red  1.29476325
# 12     123           3        4     Tim -0.47279141
# 13     123           3        1    Jack -1.06782371
# 14     123           3        2    Mary -0.21797491
# 15     123           3        3  Joseph -1.02600445
# 16     123           3        5  Kermit -0.72889123
# 17     234           1        2     Tim -1.16554485
# 18     234           1        4    Jack -0.81851572
# 19     234           1        1    Mary  0.68493608
# 20     234           1        3  Joseph -0.32005642
# 21     234           1        5  Kermit -1.31152241
# 22     234           2        2     Tim  0.82158108
# 23     234           2        4    Jack  0.68864025
# 24     234           2        5    Mary  0.55391765
# 25     234           2        3  Joseph -0.06191171
# 26     234           2        1  Kermit -0.30596266
# 27     234           3        2     Tim  0.80017687
# 28     234           3        1    Jack -0.16393097
# 29     234           3        4    Mary  1.24291877
# 30     234           3        5  Joseph -0.93438506
# 31     234           3        3  Kermit  0.39370865

答案 2 :(得分:0)

您可以如下循环遍历嵌套项目

list.id <- c(); sub.list.id <- c(); id.value <- c(); id.name <- c(); value <- c(); r <- 0

for (i in 1:length(example)) {

  list.id.value <- example[[i]]$main.id

  for (j in 1:(length(example[[i]])-1)) {

    sub.list.id.value <- j

    for (k in 1:nrow(example[[i]][[j]][1])) {
      r <- r + 1

      list.id[r] <- list.id.value %>% as.numeric()
      sub.list.id[r] <- sub.list.id.value %>% as.numeric()
      id.value[r] <- example[[i]][[j]][[1]][k, "value"] %>% as.numeric()
      id.name[r] <- example[[i]][[j]][[1]][k, "name"]       
      value[r] <- example[[i]][[j]][[2]][k] %>% as.numeric()

    }

  }

}

result <- data.frame(list.id, sub.list.id, id.value, id.name, value) # %>% as.tibble()
result