如何在Tensorflow中将每个变量作为列表收集为功能分组

时间:2018-07-21 08:04:55

标签: python variables tensorflow

我正在尝试重现最近paper deep video portrait(2018, Standford)

中引入的cGAN网络架构

我按照论文的注释将Generator定义为T(x)

T(x)是指上面列出的operation blocks,例如conv_down(), conv_upsample(), biLinearDown() and finalTanH()

我已经用'with tf.variable_scope()'语法标记了它们的范围。

当我包括一个损失和优化器时,发现我需要将所有与Generator相关的变量收集在一起,因为我们将训练两个不同的优化器,一个用于鉴别器,一个用于生成器。

歧视者是我的同事,所以这不是我关心的问题,因此我将其保留为psheudo。

但是,我想在我的代码中列出T(x)中定义的变量。

我该怎么做?有帮助吗?

import tensorflow as tf
import numpy as np

# hyper-params 
learning_rate = 0.0002
epochs = 250
batch_size = 16
N_w = 11 #number of frames concatenated together 
channels = 9*N_w
drop_out = [0.5, 0.5, 0.5, 0, 0, 0, 0, 0]
lambda_ = 100 #for Weighting of T_loss    

tf.reset_default_graph()

with tf.Graph().as_default():

    def conv_down(x, N, count): #Conv [4x4, str_2] > Batch_Normalization > Leaky_ReLU
        with tf.variable_scope("conv_down_{}_count{}".format(N, count)): #N == depth of tensor 
            x = tf.layers.conv2d(x, N, kernel_size=4, strides=2, padding='same', kernel_initializer=tf.truncated_normal_initializer(stddev=np.sqrt(0.2)))
            x = tf.contrib.layers.batch_norm(x)
            x = tf.nn.leaky_relu(x) #for conv_down, implement leakyReLU
        return x

    def conv_upsample(x, N, drop_rate, count):
        with tf.variable_scope("conv_upsamp_{}_count{}".format(N,count)) :
            #up
            with tf.variable_scope("conv_up_count{}".format(count)):
                x = tf.layers.conv2d_transpose(x, N, kernel_size=4, strides=2, padding='same', kernel_initializer=tf.truncated_normal_initializer(stddev=np.sqrt(0.2)))
                x = tf.contrib.layers.batch_norm(x)
                with tf.variable_scope("convdrop_{}".format(count)):
                    if drop_rate is not 0:
                        x = tf.nn.dropout(x, keep_prob=drop_rate)
                x = tf.nn.relu(x)

            #refine1
            with tf.variable_scope("refine1"):
                x = tf.layers.conv2d(x, N, kernel_size=3, strides=1, padding='same', kernel_initializer=tf.truncated_normal_initializer(stddev=np.sqrt(0.2)))
                x = tf.contrib.layers.batch_norm(x)
                with tf.variable_scope("rf1drop_out_{}".format(count)):
                    if drop_rate is not 0:
                        x = tf.nn.dropout(x, keep_prob=drop_rate)
                x = tf.nn.relu(x)

            #refine2
            with tf.variable_scope("refine2"):
                x = tf.layers.conv2d(x, N, kernel_size=3, strides=1, padding='same', kernel_initializer=tf.truncated_normal_initializer(stddev=np.sqrt(0.2)))
                x = tf.contrib.layers.batch_norm(x)
                with tf.variable_scope("rf2drop_out{}".format(count)):
                    if drop_rate is not 0:
                        x = tf.nn.dropout(x, keep_prob=drop_rate)
                x = tf.nn.relu(x)

        return x     

    def biLinearDown(x, N):
        return tf.image.resize_images(x, [N, N])

    def finalTanH(x):
        with tf.variable_scope("tanh"):
            x = tf.nn.tanh(x)
        return x

    def T(x):  
        #channel_output_structure
        down_channel_output = [64, 128, 256, 512, 512, 512, 512, 512]
        up_channel_output= [512, 512, 512, 512, 256, 128, 64, 3]
        biLinearDown_output= [32, 64, 128] #for skip-connection 

        #down_sampling
        conv1 = conv_down(x, down_channel_output[0], 1) 
        conv2 = conv_down(conv1, down_channel_output[1], 2)
        conv3 = conv_down(conv2, down_channel_output[2], 3)
        conv4 = conv_down(conv3, down_channel_output[3], 4)
        conv5 = conv_down(conv4, down_channel_output[4], 5)
        conv6 = conv_down(conv5, down_channel_output[5], 6)
        conv7 = conv_down(conv6, down_channel_output[6], 7)
        conv8 = conv_down(conv7, down_channel_output[7], 8)

        #upsampling 
        dconv1 = conv_upsample(conv8, up_channel_output[0], drop_out[0], 1)
        dconv2 = conv_upsample(dconv1, up_channel_output[1], drop_out[1], 2)
        dconv3 = conv_upsample(dconv2, up_channel_output[2], drop_out[2], 3)
        dconv4 = conv_upsample(dconv3, up_channel_output[3], drop_out[3], 4)
        dconv5 = conv_upsample(dconv4, up_channel_output[4], drop_out[4], 5)
        dconv6 = conv_upsample(tf.concat([dconv5, biLinearDown(x, biLinearDown_output[0])], axis=3), up_channel_output[5], drop_out[5], 6)
        dconv7 = conv_upsample(tf.concat([dconv6, biLinearDown(x, biLinearDown_output[1])], axis=3), up_channel_output[6], drop_out[6], 7)
        dconv8 = conv_upsample(tf.concat([dconv7, biLinearDown(x, biLinearDown_output[2])], axis=3), up_channel_output[7], drop_out[7], 8)

        #final_tanh
        T_x = finalTanH(dconv8)

        return T_x

    # input_tensor x : to feed as Fake 
    x = tf.placeholder(tf.float32, [batch_size, 256, 256, channels]) # batch_size x Height x Width x N_w  

    # generated tensor T(x)
    T_x = T(x)

    # Ground_truth tensor Y : to feed as Real 
    Y = tf.placeholder(tf.float32, [batch_size, 256, 256, 3]) # just a capture of video frame 


    # define sheudo Discriminator 
    def D(x, to_be_discriminated): #truth is either T(x) or GroudnTruth with a shape [256 x 256 x 3]
        sheudo_prob = np.float32(np.random.uniform(low=0., high=1.)) 
        return sheudo_prob

    theta_D = [] #tf.Variables of Discriminator 

    # Discrminated Result
    D_real = D(Y)
    D_fake = D(T_x)

    # Define loss 
    E_cGAN = tf.reduce_mean(tf.log(D_real)+ tf.log(1. - D_fake))
    E_l1 = tf.reduce_mean(tf.norm((Y-T_x)))
    Loss = EcGAN + lambda_*E_l1

    # Optimizer
    D_solver = tf.train.AdamOptimizer().minimize(-Loss, var_list=theta_D)   # Only update D(X)'s parameters, so var_list = theta_D
    T_solver = tf.train.AdamOptimizer().minimize(Loss, var_list=theta_T)   # Only update G(X)'s parameters, so var_list = theta_T


    ####TEST####
    # define sheudo_input for testing
    sheudo_x = np.float32(np.random.uniform(low=-1., high=1., size=[16, 256,256, 99]))
    sheudo_Y = np.float32(np.random.uniform(low=-1., high=1., size=[16, 256,256, 3]))


    ####Run#### 

    init_g = tf.global_variables_initializer()
    with tf.Session() as sess:
        sess.run(init_g)
        sess.run(output_tensor,  feed_dict={x: sheudo_input Y: sheudo_Y})

0 个答案:

没有答案