我正在尝试构建由向下和向上采样卷积网络组成的Encoder-Decoder,并参考以下文章及其说明:
这是我写下的内容,但它不断返回uninitialized value error
将tensorflow作为tf导入
将numpy导入为np
tf.reset_default_graph()
with tf.Graph().as_default():
# hyper-params
learning_rate = 0.0002
epochs = 250
batch_size = 16
N_w = 11 #number of frames concatenated together
channels = 9*N_w
drop_out = [0.5, 0.5, 0.5, 0, 0, 0, 0, 0]
def conv_down(x, N, stride, count): #Conv [4x4, str_2] > Batch_Normalization > Leaky_ReLU
with tf.variable_scope("conv_down_{}_{}".format(N, count)) as scope: #N == depth of tensor
with tf.variable_scope("conv_down_4x4_str{}".format(stride)) : #this's used for downsampling
x = tf.layers.conv2d(x, N, kernel_size=4, strides=stride, padding='same', kernel_initializer=tf.truncated_normal_initializer(stddev=np.sqrt(0.2)), name=scope)
x = tf.contrib.layers.batch_norm(x)
x = tf.nn.leaky_relu(x) #for conv_down, implement leakyReLU
return x
def conv_up(x, N, drop_rate, stride, count): #Conv_transpose [4x4, str_2] > Batch_Normalizaiton > DropOut > ReLU
with tf.variable_scope("{}".format(count)) as scope:
x = tf.layers.conv2d_transpose(x, N, kernel_size=4, strides=stride, padding='same', kernel_initializer=tf.truncated_normal_initializer(stddev=np.sqrt(0.2)), name=scope)
x = tf.contrib.layers.batch_norm(x)
if drop_rate is not 0:
x = tf.nn.dropout(x, keep_prob=drop_rate)
x = tf.nn.relu(x)
return x
def conv_refine(x, N, drop_rate): #Conv [3x3, str_1] > Batch_Normalization > DropOut > ReLU
x = tf.layers.conv2d(x, N, kernel_size=3, strides=1, padding='same', kernel_initializer=tf.truncated_normal_initializer(stddev=np.sqrt(0.2)))
x = tf.contrib.layers.batch_norm(x)
if drop_rate is not 0:
x = tf.nn.dropout(x, keep_prob=drop_rate)
x = tf.nn.relu(x)
return x
def conv_upsample(x, N, drop_rate, stride, count):
with tf.variable_scope("conv_upsamp_{}_{}".format(N,count)) :
with tf.variable_scope("conv_up_{}".format(count)):
x = conv_up(x, 2*N, drop_rate, stride,count)
with tf.variable_scope("refine1"):
x = conv_refine(x, N, drop_rate)
with tf.variable_scope("refine2"):
x = conv_refine(x, N, drop_rate)
return x
def biLinearDown(x, N):
return tf.image.resize_images(x, [N, N])
def finalTanH(x):
return tf.nn.tanh(x)
def T(x):
#channel_output_structure
down_channel_output = [64, 128, 256, 512, 512, 512, 512, 512]
up_channel_output= [512, 512, 512, 512, 256, 128, 64, 3]
biLinearDown_output= [32, 64, 128] #for skip-connection
#down_sampling
conv1 = conv_down(x, down_channel_output[0], 2, 1)
conv2 = conv_down(conv1, down_channel_output[1], 2, 2)
conv3 = conv_down(conv2, down_channel_output[2], 2, 3)
conv4 = conv_down(conv3, down_channel_output[3], 1, 4)
conv5 = conv_down(conv4, down_channel_output[4], 1, 5)
conv6 = conv_down(conv5, down_channel_output[5], 1, 6)
conv7 = conv_down(conv6, down_channel_output[6], 1, 7)
conv8 = conv_down(conv7, down_channel_output[7], 1, 8)
#upsampling
dconv1 = conv_upsample(conv8, up_channel_output[0], drop_out[0], 1, 1)
dconv2 = conv_upsample(dconv1, up_channel_output[1], drop_out[1], 1, 2)
dconv3 = conv_upsample(dconv2, up_channel_output[2], drop_out[2], 1, 3)
dconv4 = conv_upsample(dconv3, up_channel_output[3], drop_out[3], 1, 4)
dconv5 = conv_upsample(dconv4, up_channel_output[4], drop_out[4], 1, 5)
dconv6 = conv_upsample(tf.concat([dconv5, biLinearDown(x, biLinearDown_output[0])], axis=3), up_channel_output[5], drop_out[5], 2, 6)
dconv7 = conv_upsample(tf.concat([dconv6, biLinearDown(x, biLinearDown_output[1])], axis=3), up_channel_output[6], drop_out[6], 2, 7)
dconv8 = conv_upsample(tf.concat([dconv7, biLinearDown(x, biLinearDown_output[2])], axis=3), up_channel_output[7], drop_out[7], 2, 8)
#final_tanh
T_x = finalTanH(dconv8)
return T_x
# input_tensor X
x = tf.placeholder(tf.float32, [batch_size, 256, 256, channels]) # batch_size x Height x Width x N_w
# define sheudo_input for testing
sheudo_input = np.float32(np.random.uniform(low=-1., high=1., size=[16, 256,256, 99]))
# initialize_
init_g = tf.global_variables_initializer()
init_l = tf.local_variables_initializer()
with tf.Session() as sess:
sess.run(init_g)
sess.run(init_l)
sess.run(T(x), feed_dict={x: sheudo_input})
错误详细信息如下:
FailedPreconditionError:尝试使用未初始化的值conv_upsamp_3_8 / conv_up_8 / 8 / kernel [[[节点:conv_upsamp_3_8 / conv_up_8 / 8 /内核/读取= IdentityT = DT_FLOAT,_device =“ / job:localhost /副本:0 / task:0 / device:CPU:0”]]
conv_upsamp_3_8是上采样的最后一部分,只是在应用TanH
之前。
我认为问题可能源于我定义的convupsample引用了其他两个功能-convup
和refine
的那部分,但是不能确定为什么在最后一步会出现错误。
有任何猜想或提示吗?