我有一些使用ReporteR的脚本运行良好,并且正在尝试将其更新为使用Officer。我的脚本非常重复,因为我只需要输出很多相同的东西,有时只是更改字体。转换后,我发现脚本太慢了,我将无法使用它们。这些脚本可以在ReporteR中运行几分钟,但是会花很多时间在警官身上。
为什么这是官员5000次:
body_add_par(doc,“”)
比ReporteRs中的等效速度慢得多:
doc <-addParagraph(doc,'')
非常感谢
代码(所有向量都有2000多个元素):
outputFile <- paste0(OutputDir, "test.docx")
#SET STYLES
norm <- fp_text(color = "black", font.size = 10, bold = FALSE, italic = FALSE,
underlined = FALSE, font.family = "Arial", vertical.align = "baseline",
shading.color = "transparent")
norm_red <- fp_text(color = "red", font.size = 10, bold = FALSE, italic = FALSE,
underlined = FALSE, font.family = "Arial", vertical.align = "baseline",
shading.color = "transparent")
norm_blue <- fp_text(color = "blue", font.size = 10, bold = FALSE, italic = FALSE,
underlined = FALSE, font.family = "Arial", vertical.align = "baseline",
shading.color = "transparent")
norm_green <- fp_text(color = "green", font.size = 10, bold = FALSE, italic = FALSE,
underlined = FALSE, font.family = "Arial", vertical.align = "baseline",
shading.color = "transparent")
bold <- fp_text(color = "black", font.size = 10, bold = TRUE, italic = FALSE,
underlined = FALSE, font.family = "Arial", vertical.align = "baseline",
shading.color = "transparent")
bold_red <- fp_text(color = "red", font.size = 10, bold = TRUE, italic = FALSE,
underlined = FALSE, font.family = "Arial", vertical.align = "baseline",
shading.color = "transparent")
bold_blue <- fp_text(color = "blue", font.size = 10, bold = TRUE, italic = FALSE,
underlined = FALSE, font.family = "Arial", vertical.align = "baseline",
shading.color = "transparent")
bold_green <- fp_text(color = "green", font.size = 10, bold = TRUE, italic = FALSE,
underlined = FALSE, font.family = "Arial", vertical.align = "baseline",
shading.color = "transparent")
doc <- read_docx()
#ADD TITLE
fpar_ <- fpar(ftext("ASSIGNMENTS", prop = bold))
doc <- body_add_fpar(doc, fpar_, style = "centered", pos = "on")
doc <- body_add_par(doc, "", style = NULL, pos = "after")
#ADD DATE, DIRECTORY
fpar_ <- fpar(ftext("DATE: ", prop = bold),
ftext(date(), prop = norm))
doc <- body_add_fpar(doc, fpar_, style = "Normal", pos = "after")
fpar_ <- fpar(ftext("DIRECTORY: ", prop = bold),
ftext(Dir, prop = norm))
doc <- body_add_fpar(doc, fpar_, style = "Normal", pos = "after")
doc <- body_add_par(doc, "", style = NULL, pos = "after")
#Get all
all <- as.character(Summary$Name)
for (i in 1:length(all)) {
res <- as.numeric(Types[Types$Num==all[i], "Code"])
if (5 %in% res | 12 %in% res) {
#Green
fpar_ <- fpar(ftext(all[i], prop = bold_green))
} else if (7 %in% res) {
#Red
fpar_ <- fpar(ftext(all[i], prop = bold_red))
} else if (8 %in% res) {
#Blue
fpar_ <- fpar(ftext(all[i], prop = bold_blue))
} else {
fpar_ <- fpar(ftext(all[i], prop = bold))
}
doc <- body_add_fpar(doc, fpar_, style = "Normal", pos = "after")
#Get list of files
res <- unique(Detail[Detail$Num==all[i], c("Name", "Cat")])
#OUTPUT FILE NAME AND CAT
if (nrow(res) == 0) {
#NO FILE FOUND
} else {
for (j in 1:nrow(res)) {
fpar_ <- fpar(ftext(paste(as.character(res[j, "Name"]), " "), prop = bold),
ftext(as.character(res[j, "Cat"]), prop = norm))
doc <- body_add_fpar(doc, fpar_, style = "Normal", pos = "after")
}
}
doc <- body_add_par(doc, "", style = NULL, pos = "after")
}
print(doc, target = outputFile)
答案 0 :(得分:1)
这是与某些可复制代码的比较:
// Video src
var video_src = [
"https://www.youtube.com/embed/sdUUx5FdySs?autoplay=1",
"https://www.youtube.com/embed/YE7VzlLtp-4?autoplay=1"
];
var current_video = "";
var frame = document.getElementById('vid');
// slides
var slideIndex = 1;
showSlides(slideIndex);
function plusSlides(n) {
showSlides(slideIndex += n);
}
function currentSlide(n) {
showSlides(slideIndex = n);
current_video = video_src[n-1];
frame.src = current_video;
}
结果如下-官员是获胜者:
library(officer)
library(ReporteRs)
library(microbenchmark)
docx()# first run can be slow because of java init. operations
mb <- microbenchmark::microbenchmark(
officer = {
doc <- read_docx()
for(i in 1:100){
doc <- body_add_par(doc, "")
}
},
ReporteRs = {
doc <- docx()
for(i in 1:100){
doc <- addParagraph(doc, '')
}
} )
这是我的> mb
Unit: milliseconds
expr min lq mean median uq max neval
officer 224.3742 232.9602 238.8452 237.5110 241.5320 325.4288 100
ReporteRs 311.7194 337.9194 349.7107 343.9703 353.8814 447.2623 100
结果:
sessionInfo()