代码如下:
import numpy as np
from numpy.random import random
@profile
def point_func(point, points, funct):
return np.sum(funct(np.sqrt(((point - points)**2)).sum(1)))
@profile
def point_afunc(ipoints, epoints, funct):
res = np.zeros(len(ipoints))
for idx, point in enumerate(ipoints):
res[idx] = point_func(point, epoints, funct)
return res
@profile
def main():
points = random((5000,3))
rpoint = random((1,3))
pres = point_func(rpoint, points, lambda r : r**3)
ares = point_afunc(points, points, lambda r : r**3)
if __name__=="__main__":
main()
我已经用kernprof
对其进行了分析,并得到了它:
Timer unit: 1e-06 s
Total time: 2.25667 s File: point-array-vectorization.py Function: point_func at line 4
Line # Hits Time Per Hit % Time Line Contents
==============================================================
4 @profile
5 def point_func(point, points, funct):
6 5001 2256667.0 451.2 100.0 return np.sum(funct(np.sqrt(((point - points)**2)).sum(1)))
Total time: 2.27844 s File: point-array-vectorization.py Function: point_afunc at line 8
Line # Hits Time Per Hit % Time Line Contents
==============================================================
8 @profile
9 def point_afunc(ipoints, epoints, funct):
10 1 5.0 5.0 0.0 res = np.zeros(len(ipoints))
11 5001 4650.0 0.9 0.2 for idx, point in enumerate(ipoints):
12 5000 2273789.0 454.8 99.8 res[idx] = point_func(point, epoints, funct)
13 1 0.0 0.0 0.0 return res
Total time: 2.28239 s File: point-array-vectorization.py Function: main at line 15
Line # Hits Time Per Hit % Time Line Contents
==============================================================
15 @profile
16 def main():
17 1 145.0 145.0 0.0 points = random((5000,3))
18 1 2.0 2.0 0.0 rpoint = random((1,3))
19
20 1 507.0 507.0 0.0 pres = point_func(rpoint, points, lambda r : r**3)
21
22 1 2281731.0 2281731.0 100.0 ares = point_afunc(points, points, lambda r : r**3)
所以这部分花费了大部分时间:
11 5001 4650.0 0.9 0.2 for idx, point in enumerate(ipoints):
12 5000 2273789.0 454.8 99.8 res[idx] = point_func(point, epoints, funct)
我想看看时间浪费是否是由于在funct
循环中调用for
引起的。为此,我想使用point_afunc
对numpy.vectorize
进行矢量化处理。我已经尝试过了,但是似乎可以向量化这些点:循环最终循环到各个点组件上。
@profile
def point_afunc(ipoints, epoints, funct):
res = np.zeros(len(ipoints))
for idx, point in enumerate(ipoints):
res[idx] = point_func(point, epoints, funct)
return res
point_afunc = np.vectorize(point_afunc)
导致错误:
File "point-array-vectorization.py", line 24, in main
ares = point_afunc(points, points, lambda r : r**3)
File "/usr/lib/python3.6/site-packages/numpy/lib/function_base.py", line 2755, in __call__
return self._vectorize_call(func=func, args=vargs)
File "/usr/lib/python3.6/site-packages/numpy/lib/function_base.py", line 2825, in _vectorize_call
ufunc, otypes = self._get_ufunc_and_otypes(func=func, args=args)
File "/usr/lib/python3.6/site-packages/numpy/lib/function_base.py", line 2785, in _get_ufunc_and_otypes
outputs = func(*inputs)
File "/usr/lib/python3.6/site-packages/line_profiler.py", line 115, in wrapper
result = func(*args, **kwds)
File "point-array-vectorization.py", line 10, in point_afunc
res = np.zeros(len(ipoints))
TypeError: object of type 'numpy.float64' has no len()
是否以某种方式对ipoints
中的每个点进行矢量化处理,却对这些点的各个分量进行了矢量化处理?
编辑:尝试了以下@John Zwinck的建议,并使用了numba。使用@jit
的执行时间比不使用它的执行时间长。如果我从所有函数中删除@profile
装饰器,并用@jit
替换point_func
和point_afunc
,则执行时间为:
time ./point_array_vectorization.py
real 0m3.686s
user 0m3.584s
sys 0m0.077s
point-array-vectorization> time ./point_array_vectorization.py
real 0m3.683s
user 0m3.596s
sys 0m0.063s
point-array-vectorization> time ./point_array_vectorization.py
real 0m3.751s
user 0m3.658s
sys 0m0.070s
,并删除所有@jit
个修饰符:
point-array-vectorization> time ./point_array_vectorization.py
real 0m2.925s
user 0m2.874s
sys 0m0.030s
point-array-vectorization> time ./point_array_vectorization.py
real 0m2.950s
user 0m2.902s
sys 0m0.029s
point-array-vectorization> time ./point_array_vectorization.py
real 0m2.951s
user 0m2.886s
sys 0m0.042s
我需要更多地帮助numba
编译器吗?
编辑:是否可以使用point_afunc
编写numpy
而不使用for循环?
编辑:将循环版本与Peter的numpy
广播版本进行了比较,循环版本更快:
Timer unit: 1e-06 s
Total time: 2.13361 s
File: point_array_vectorization.py
Function: point_func at line 7
Line # Hits Time Per Hit % Time Line Contents
==============================================================
7 @profile
8 def point_func(point, points, funct):
9 5001 2133615.0 426.6 100.0 return np.sum(funct(np.sqrt(((point - points)**2)).sum(1)))
Total time: 2.1528 s
File: point_array_vectorization.py
Function: point_afunc at line 11
Line # Hits Time Per Hit % Time Line Contents
==============================================================
11 @profile
12 def point_afunc(ipoints, epoints, funct):
13 1 5.0 5.0 0.0 res = np.zeros(len(ipoints))
14 5001 4176.0 0.8 0.2 for idx, point in enumerate(ipoints):
15 5000 2148617.0 429.7 99.8 res[idx] = point_func(point, epoints, funct)
16 1 0.0 0.0 0.0 return res
Total time: 2.75093 s
File: point_array_vectorization.py
Function: new_point_afunc at line 18
Line # Hits Time Per Hit % Time Line Contents
==============================================================
18 @profile
19 def new_point_afunc(ipoints, epoints, funct):
20 1 2750926.0 2750926.0 100.0 return np.sum(funct(np.sqrt((ipoints[:, None, :] - epoints[None, :, :])**2).sum(axis=-1)), axis=1)
Total time: 4.90756 s
File: point_array_vectorization.py
Function: main at line 22
Line # Hits Time Per Hit % Time Line Contents
==============================================================
22 @profile
23 def main():
24 1 170.0 170.0 0.0 points = random((5000,3))
25 1 4.0 4.0 0.0 rpoint = random((1,3))
26 1 546.0 546.0 0.0 pres = point_func(rpoint, points, lambda r : r**3)
27 1 2155829.0 2155829.0 43.9 ares = point_afunc(points, points, lambda r : r**3)
28 1 2750945.0 2750945.0 56.1 vares = new_point_afunc(points, points, lambda r : r**3)
29 1 71.0 71.0 0.0 assert(np.max(np.abs(ares-vares)) < 1e-15)
答案 0 :(得分:3)
numpy.vectorize()
在性能方面没有任何用处:它只是语法糖(或语法氰化物),它建立了一个隐藏的Python for
循环。它不会帮你。
Numba可能会对您有所帮助。它可以及时地编译您的原始代码,并且可能会加快很多速度。只需将您的@profile
装饰器替换为@numba.jit
。
答案 1 :(得分:1)
您可以为此使用广播。广播是对点矩阵的重塑,以便尺寸彼此“广播”。例如ipoints[:, None, :] - epoints[None, :, :]
说:
ipoints
从MxD重塑为Mx1xD epoints
从NxD重塑为1xNxD 完整代码变为:
def new_point_afunc(ipoints, epoints, funct):
return np.sum(funct(np.sqrt((ipoints[:, None, :] - epoints[None, :, :])**2).sum(axis=-1)), axis=1)
警告-在您的示例中,点的维数仅为3,但对于较大的维而言,这可能不是实际的内存方式,因为此ipoints[:, None, :] - epoints[None, :, :]
方法会创建形状为(len(ipoints), len(epoints), n_dim)
的中间矩阵。
答案 2 :(得分:1)
此方法的性能取决于有人要调用创建的函数的频率以及输入数据的大小。编译开销约为1.67s,因此不适合将这种方法用于较小的数据或仅调用一次函数。
我还对您的代码进行了少量修改。使用Numba编写普通循环,可以在运行时和编译时将np.sum(funct(np.sqrt(((point - points)**2)).sum(1)))
之类的多个矢量化命令集成在一起,从而更快。此外,这个问题可以很容易地并行化,但这会增加编译量。
示例
import numpy as np
from numpy.random import random
import numba as nb
import time
def make_point_func(funct):
@nb.njit(fastmath=True)
def point_func(point, points):
return np.sum(funct(np.sqrt(((point - points)**2)).sum(1)))
return point_func
def make_point_afunc(funct,point_func):
@nb.njit(fastmath=True)
def point_afunc(ipoints, epoints):
res = np.zeros(len(ipoints))
for idx in range(len(ipoints)):
res[idx] = point_func(ipoints[idx], epoints)
return res
return point_afunc
def main():
points = random((5000,3))
rpoint = random((1,3))
#Make functions
point_func=make_point_func(nb.njit(lambda r : r**3))
point_afunc=make_point_afunc(nb.njit(lambda r : r**3),point_func)
#first call
print("First call with compilation overhead")
t1=time.time()
pres = point_func(rpoint, points)
ares = point_afunc(points, points)
print(time.time()-t1)
print("Second call without compilation overhead")
t1=time.time()
#second call
pres = point_func(rpoint, points)
ares = point_afunc(points, points)
print(time.time()-t1)
if __name__=="__main__":
main()
性能
original: 1.7s
Numba first call: 1.87s
Numba further calls: 0.2s