我有一个带有许多列的pandas DataFrame(df),其中两个是“ Year”和“ col_1”
我在列表(条件)中也总结了一个提取条件:
[1234,5432,...,54353,654,1234]。
如果要满足以下条件,我想提取此DataFrame的子集:
((df.Year==1990) & (df.col_1>=Criteria[0])) or
((df.Year==1991) & (df.col_1>=Criteria[1])) or
((df.Year==1992) & (df.col_1>=Criteria[2])) or
...
((df.Year==2010) & (df.col_1>=Criteria[20])) or
((df.Year==2011) & (df.col_1>=Criteria[21]))
尽管我可以列出所有这些条件的组合,但我想 只需短短一行即可完成此操作,例如:
df = df[df[['col_1','col_2']].apply(lambda x: f(*x), axis=1)]
(来自how do you filter pandas dataframes by multiple columns)
请告知我该怎么做。谢谢。
答案 0 :(得分:1)
Sample DataFrame
:
df = pd.DataFrame({'col_1':[2000,1,54353,5],
'Year':[1990,1991,1992,1993],
'a':range(4)})
print (df)
col_1 Year a
0 2000 1990 0
1 1 1991 1
2 54353 1992 2
3 5 1993 3
按条件和年份组合创建助手dictionary
:
Criteria = [1234,5432,54353,654,1234]
years = np.arange(1990, 1990 + len(Criteria))
d = dict(zip(years, Criteria))
print (d)
{1990: 1234, 1991: 5432, 1992: 54353, 1993: 654, 1994: 1234}
最后map
前year
列并按boolean indexing
过滤:
df = df[df['col_1'] >= df['Year'].map(d)]
print (df)
col_1 Year a
0 2000 1990 0
2 54353 1992 2
详细信息:
print (df['Year'].map(d))
0 1234
1 5432
2 54353
3 654
Name: Year, dtype: int64
print (df['col_1'] >= df['Year'].map(d))
0 True
1 False
2 True
3 False
dtype: bool