我有一个如下所示的数据框。最右边的两列是我想要的列:
Open Close open_to_close close_to_next_open open_desired close_desired
0 0 0 3 0 0
0 0 4 8 3 7
0 0 1 1 15 16
计算如下:
open_desired = close_desired(prior row) + close_to_next_open(prior row)
close_desired = open_desired + open_to_close
如何以循环方式实现以下内容?我正在尝试直到最后一行。
df = pd.DataFrame({'open': [0,0,0], 'close': [0,0,0], 'open_to_close': [0,4,1], 'close_to_next_open': [3,8,1]})
df['close_desired'] = 0
df['open_desired'] = 0
##First step is to create open_desired in current row which is dependent on close_desired in previous row
df['open_desired'] = df['close_desired'].shift() + df['close_to_next_open'].shift()
##second step is to create close_desired in current row which is dependent on open_desired in current row
df['close_desired'] = df['open_desired'] + df['open_to_close']
df.fillna(0,inplace=True)
答案 0 :(得分:1)
我唯一想到的方法是使用iterrows()
for row, v in df.iterrows():
if row>0:
df.loc[row,'open_desired'] = df.shift(1).loc[row, 'close_desired'] + df.shift(1).loc[row, 'close_to_next_open']
df.loc[row,'close_desired'] = df.loc[row, 'open_desired'] + df.loc[row, 'open_to_close']