我正在使用以下软件包:
import pandas as pd
import numpy as np
import xarray as xr
import geopandas as gpd
我有以下对象存储数据:
print(precip_da)
Out[]:
<xarray.DataArray 'precip' (time: 13665, latitude: 200, longitude: 220)>
[601260000 values with dtype=float32]
Coordinates:
* longitude (longitude) float32 35.024994 35.074997 35.125 35.175003 ...
* latitude (latitude) float32 5.0249977 5.074997 5.125 5.174999 ...
* time (time) datetime64[ns] 1981-01-01 1981-01-02 1981-01-03 ...
Attributes:
standard_name: convective precipitation rate
long_name: Climate Hazards group InfraRed Precipitation with St...
units: mm/day
time_step: day
geostatial_lat_min: -50.0
geostatial_lat_max: 50.0
geostatial_lon_min: -180.0
geostatial_lon_max: 180.0
如下所示:
precip_da.mean(dim="time").plot()
我将shapefile作为geopandas.GeoDataFrame
来表示多边形。
awash = gpd.read_file(shp_dir)
awash
Out[]:
OID_ Name FolderPath SymbolID AltMode Base Clamped Extruded Snippet PopupInfo Shape_Leng Shape_Area geometry
0 0 Awash_Basin Awash_Basin.kml 0 0 0.0 -1 0 None None 30.180944 9.411263 POLYGON Z ((41.78939511000004 11.5539922500000...
外观如下:
awash.plot()
将一个绘制在另一个上,就像这样:
ax = awash.plot(alpha=0.2, color='black')
precip_da.mean(dim="time").plot(ax=ax,zorder=-1)
我的问题是,如何通过检查纬度点是否位于存储为xarray.DataArray
的shapefile内来掩盖geopandas.GeoDataFrame
?
我想做以下事情:
masked_precip = precip_da.within(awash)
OR
masked_precip = precip_da.loc[precip_da.isin(awash)]
我已经考虑过使用rasterio.mask
module,但是我不知道输入数据需要采用什么格式。听起来好像做对了一样:
“ 使用输入形状创建蒙版或填充数组。对输入形状之外的像素进行蒙版或将其设置为无数据”
从GIS Stack Exchange here发布
答案 0 :(得分:6)
这是我从this gist获得的当前可行的解决方案。这是Stephan Hoyer对xarray项目github issue的回答。
在affine
和rasterio
之上的其他软件包之上都是必需的
from rasterio import features
from affine import Affine
def transform_from_latlon(lat, lon):
""" input 1D array of lat / lon and output an Affine transformation
"""
lat = np.asarray(lat)
lon = np.asarray(lon)
trans = Affine.translation(lon[0], lat[0])
scale = Affine.scale(lon[1] - lon[0], lat[1] - lat[0])
return trans * scale
def rasterize(shapes, coords, latitude='latitude', longitude='longitude',
fill=np.nan, **kwargs):
"""Rasterize a list of (geometry, fill_value) tuples onto the given
xray coordinates. This only works for 1d latitude and longitude
arrays.
usage:
-----
1. read shapefile to geopandas.GeoDataFrame
`states = gpd.read_file(shp_dir+shp_file)`
2. encode the different shapefiles that capture those lat-lons as different
numbers i.e. 0.0, 1.0 ... and otherwise np.nan
`shapes = (zip(states.geometry, range(len(states))))`
3. Assign this to a new coord in your original xarray.DataArray
`ds['states'] = rasterize(shapes, ds.coords, longitude='X', latitude='Y')`
arguments:
---------
: **kwargs (dict): passed to `rasterio.rasterize` function
attrs:
-----
:transform (affine.Affine): how to translate from latlon to ...?
:raster (numpy.ndarray): use rasterio.features.rasterize fill the values
outside the .shp file with np.nan
:spatial_coords (dict): dictionary of {"X":xr.DataArray, "Y":xr.DataArray()}
with "X", "Y" as keys, and xr.DataArray as values
returns:
-------
:(xr.DataArray): DataArray with `values` of nan for points outside shapefile
and coords `Y` = latitude, 'X' = longitude.
"""
transform = transform_from_latlon(coords[latitude], coords[longitude])
out_shape = (len(coords[latitude]), len(coords[longitude]))
raster = features.rasterize(shapes, out_shape=out_shape,
fill=fill, transform=transform,
dtype=float, **kwargs)
spatial_coords = {latitude: coords[latitude], longitude: coords[longitude]}
return xr.DataArray(raster, coords=spatial_coords, dims=(latitude, longitude))
def add_shape_coord_from_data_array(xr_da, shp_path, coord_name):
""" Create a new coord for the xr_da indicating whether or not it
is inside the shapefile
Creates a new coord - "coord_name" which will have integer values
used to subset xr_da for plotting / analysis/
Usage:
-----
precip_da = add_shape_coord_from_data_array(precip_da, "awash.shp", "awash")
awash_da = precip_da.where(precip_da.awash==0, other=np.nan)
"""
# 1. read in shapefile
shp_gpd = gpd.read_file(shp_path)
# 2. create a list of tuples (shapely.geometry, id)
# this allows for many different polygons within a .shp file (e.g. States of US)
shapes = [(shape, n) for n, shape in enumerate(shp_gpd.geometry)]
# 3. create a new coord in the xr_da which will be set to the id in `shapes`
xr_da[coord_name] = rasterize(shapes, xr_da.coords,
longitude='longitude', latitude='latitude')
return xr_da
它可以实现如下:
precip_da = add_shape_coord_from_data_array(precip_da, shp_dir, "awash")
awash_da = precip_da.where(precip_da.awash==0, other=np.nan)
awash_da.mean(dim="time").plot()
答案 1 :(得分:0)