此张量流代码来自此tutorial。我想知道是否有一种方法可以在张量的特定索引处打印值?例如,在下面的会话中,我可以打印张量y_
的第1行第1列的值吗,它应该看起来像[0,0,0,1,0,0,0,0,0,0]?
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
import tensorflow as tf
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
for _ in range(10):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(y_))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
答案 0 :(得分:0)
在placeholder
中运行Session
时,必须使用方法feed_dict
的{{1}}属性将数据传递到占位符。
因此,根据您的问题,要查看张量sess.run()
的第一行和第一列,请将代码调整为:y_
。下面的整个代码块应为您提供预期的结果:
sess.run(y_[0:][0], feed_dict = {y_: batch_ys})
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
import tensorflow as tf
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), \
reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
for _ in range(10):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
print('Values of y\n{}'.format(sess.run(y_[0:][0], \
feed_dict = {y_: batch_ys})))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, \
y_: mnist.test.labels}))
sess.close()