在scipy.minimize收敛之后,是否有办法直接检索最小化的误差,或者必须将其直接编码为成本函数?
我只能检索似乎收敛的系数。
def errorFunction(params,series,loss_function,slen = 12):
alpha, beta, gamma = params
breakUps = int(len(series) / slen)
end = breakUps * slen
test = series[end:]
errors = []
for i in range(2,breakUps+1):
model = HoltWinters(series=series[:i * 12], slen=slen,
alpha=alpha, beta=beta, gamma=gamma, n_preds=len(test))
model.triple_exponential_smoothing()
predictions = model.result[-len(test):]
actual = test
error = loss_function(predictions, actual)
errors.append(error)
return np.mean(np.array(errors))
opt = scipy.optimize.minimize(errorFunction, x0=x,
args=(train, mean_squared_log_error),
method="L-BFGS-B", bounds = ((0, 1), (0, 1), (0, 1))
)
#gets the converged values
optimal values = opt.x
#I would like to know what the error with errorFunction is when using opt.x values, without having to manually run the script again
#Is the minimum error stored somewhere in the returned object opt
答案 0 :(得分:0)
根据我对函数scipy.optimize.minimize
的了解,结果以OptimizeResult
对象的形式返回。
根据此类文档(here),它具有属性fun
,即“目标函数的值”。
因此,如果您执行opt.fun
,则应获得所需的结果。 (您可以检索更多的值,例如Jacobian opt.jac
,Hessian opt.hess
等,如文档中所述)