我的问题与this question *有关。
是否可以将标准张量流层转换为“细胞”,并与RNN cells一起使用以构成递归神经网络?
因此,新的“单元格”应存储参数(权重,...),并可以在各种输入上调用。像这样:
from tf.nn import batch_normalization, conv2d
from tf.contrib.rnn import MultiRNNCell, LSTMCell
bn_cell = cell_creation_fun(batch_normalization, otherparams) # batch norm cell
conv_cell = cell_creation_fun(conv2d, otherparams ) # non-rnn conv cell
# or `conv_cell = cell_creation_fun(tf.layers.Conv2D, otherparams )` # using tf.layers
以便可以像这样使用它们:
multi_cell = MultiRNNCell([LSTMCell(...), conv_cell, bn_cell])
或者这样:
h = ...
conv_h, _ = conv_cell(h, state=None)
normed_h, _ = bn_cell(h, state=None)
我唯一想到的就是为我要使用的每一层手动编写这样的“单元格”,并将其RNNCell子类化。但是,使用现有功能(例如Conv2D)在创建过程中不能传递“ input”参数似乎并不简单。 (当我管理时,将发布邮政编码。)
*也许以更有针对性的方式提问有可能得到答案。
答案 0 :(得分:0)
好,这是我到目前为止的内容:
class LayerCell(rnn_cell_impl.RNNCell):
def __init__(self, tf_layer, **kwargs):
''' :param tf_layer: a tensorflow layer, e.g. tf.layers.Conv2D or
tf.keras.layers.Conv2D. NOT tf.layers.conv2d !'''
self.layer_fn = tf_layer(**kwargs)
def __call__(self, inputs, state, scope=None):
''' Every `RNNCell` must implement `call` with
the signature `(output, next_state) = call(input, state)`. The optional
third input argument, `scope`, is allowed for backwards compatibility
purposes; but should be left off for new subclasses.'''
return (self.layer_fn(inputs), state)
def __str__(self):
return "Cell wrapper of " + str(self.layer_fn)
def __getattr__(self, attr):
'''credits to https://stackoverflow.com/questions/1382871/dynamically-attaching-a-method-to-an-existing-python-object-generated-with-swig/1383646#1383646'''
return getattr(self.layer_fn, attr)
@property
def state_size(self):
"""size(s) of state(s) used by this cell.
It can be represented by an Integer, a TensorShape or a tuple of Integers
or TensorShapes.
"""
return (0,)
@property
def output_size(self):
"""Integer or TensorShape: size of outputs produced by this cell."""
# use with caution; could be uninitialized
return self.layer_fn.output_shape
(自然,不要与循环图层一起使用,因为状态保存将被破坏。)
似乎可以使用:tf.layers.Conv2D,tf.keras.layers.Conv2D,tf.keras.layers.Activation,tf.layers.BatchNormalization
不适用于:tf.keras.layers.BatchNormalization。 至少在tf.while循环中使用它对我来说失败了;抱怨合并来自不同框架的变量,类似于here。也许keras使用tf.Variable() instead of tf.get_variable() ...?
用法:
cell0 = tf.contrib.rnn.ConvLSTMCell(conv_ndims=2, input_shape=[40, 40, 3], output_channels=16, kernel_shape=[5, 5])
cell1 = LayerCell(tf.keras.layers.Conv2D, filters=8, kernel_size=[5, 5], strides=(1, 1), padding='same')
cell2 = LayerCell(tf.layers.BatchNormalization, axis=-1)
inputs = np.random.rand(10, 40, 40, 3).astype(np.float32)
multicell = tf.contrib.rnn.MultiRNNCell([cell0, cell1, cell2])
state = multicell.zero_state(batch_size=10, dtype=tf.float32)
output = multicell(inputs, state)
print("Yippee!")