我想遍历Spark中的架构。使用df.schema
给出了嵌套的StructType
和StructFields
的列表。
可以像这样索引根元素。
IN: val temp = df.schema
IN: temp(0)
OUT: StructField(A,StringType,true)
IN: temp(3)
OUT: StructField(D,StructType(StructField(D1,StructType(StructField(D11,StringType,true), StructField(D12,StringType,true), StructField(D13,StringType,true)),true), StructField(D2,StringType,true), StructField(D3,StringType,true)),true)
当我尝试访问嵌套的StructType
时,会发生以下情况
IN: val temp1 = temp(3).dataType
IN: temp1(0)
OUT:
Name: Unknown Error
Message: <console>:38: error: org.apache.spark.sql.types.DataType does not take parameters
temp1(0)
^
StackTrace:
我不了解的是temp
和temp1
都是StructType
类的,但是temp
是可迭代的,但是temp1
不是
IN: temp.getClass
OUT: class org.apache.spark.sql.types.StructType
IN: temp1.getClass
OUT: class org.apache.spark.sql.types.StructType
我也尝试过dtypes
,但是在尝试访问嵌套元素时遇到了类似的问题。
IN: df.dtypes(3)(0)
OUT:
Name: Unknown Error
Message: <console>:36: error: (String, String) does not take parameters
df.dtypes(3)(0)
^
StackTrace:
那么,如何在了解子字段之前遍历架构?
答案 0 :(得分:1)
好吧,如果想要所有嵌套列的列表,可以编写类似的递归函数
给出:
val schema = StructType(
StructField("name", StringType) ::
StructField("nameSecond", StringType) ::
StructField("nameDouble", StringType) ::
StructField("someStruct", StructType(
StructField("insideS", StringType) ::
StructField("insideD", StructType(
StructField("inside1", StringType) :: Nil
)) ::
Nil
)) ::
Nil
)
val rdd = session.sparkContext.emptyRDD[Row]
val df = session.createDataFrame(rdd, schema)
df.printSchema()
哪个会产生:
root
|-- name: string (nullable = true)
|-- nameSecond: string (nullable = true)
|-- nameDouble: string (nullable = true)
|-- someStruct: struct (nullable = true)
| |-- insideS: string (nullable = true)
| |-- insideD: struct (nullable = true)
| | |-- inside1: string (nullable = true)
如果要获取列的全名列表,可以编写如下内容:
def fullFlattenSchema(schema: StructType): Seq[String] = {
def helper(schema: StructType, prefix: String): Seq[String] = {
val fullName: String => String = name => if (prefix.isEmpty) name else s"$prefix.$name"
schema.fields.flatMap {
case StructField(name, inner: StructType, _, _) =>
fullName(name) +: helper(inner, fullName(name))
case StructField(name, _, _, _) => Seq(fullName(name))
}
}
helper(schema, "")
}
哪个会返回:
ArraySeq(name, nameSecond, nameDouble, someStruct, someStruct.insideS, someStruct.insideD, someStruct.insideD.inside1)
答案 1 :(得分:1)
在Spark SQL类型架构中,当通过它进行递归时需要担心一些复杂的数据类型,例如StructType,ArrayType和MapType。要编写一个完全遍历带有结构映射和映射数组的架构的函数,是非常复杂的。
要递归我遇到的大多数架构,我只需要考虑StructType和ArrayType。
给出类似以下的模式:
root
|-- name: string (nullable = true)
|-- nameSecond: long (nullable = true)
|-- acctRep: string (nullable = true)
|-- nameDouble: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- insideK: string (nullable = true)
| | |-- insideS: string (nullable = true)
| | |-- insideD: long (nullable = true)
|-- inside1: long (nullable = true)
我将使用像这样的递归函数:
def collectAllFieldNames(schema: StructType): List[String] =
schema.fields.flatMap {
case StructField(name, structType: StructType, _, _) => name :: collectAllFieldNames(structType)
case StructField(name, ArrayType(structType: StructType, _), _, _) => name :: collectAllFieldNames(structType)
case StructField(name, _, _, _) => name :: Nil
}
给出结果:
List(name, nameSecond, acctRep, nameDouble, insideK, insideS, insideK, inside1)