使用Plotly与Slider进行交互式绘图

时间:2018-07-16 17:53:58

标签: python plotly

如何使用Plotly在Python中重新创建以下交互式图?

我的简单示例绘制了一个带有x列和另一个1-x列的条形图。

Mathematica的GIF:

enter image description here

滑块允许x在0到1之间变化。

Mathematica代码:

Manipulate[BarChart[{x, 1 - x}, PlotRange -> {0, 1}], 
    {{x, 0.3, "Level"}, 0, 1, Appearance -> "Open"}]

更新

这是我不喜欢的解决方案:

import plotly.graph_objs as go
from plotly.offline import init_notebook_mode, iplot
init_notebook_mode(connected=True)

import ipywidgets as widgets

绘图:

def update_plot(x):
    data = [go.Bar(
                x=['1', '2'],
                y=[x, 1-x]
    )]
    iplot(data, show_link=False)

x = widgets.FloatSlider(min=0, max=1, value=0.3)
widgets.interactive(update_plot, x=x)

存在此问题

  • 移动滑块时图会闪烁
  • 滑块放错了位置
  • 增量不够细致
  • 我自己无法指定精确值

2 个答案:

答案 0 :(得分:2)

下面的代码在plotlyDash中创建一个交互式绘图。它需要两个输入:滑块和文本框。当以下代码另存为'.py'并且文件在终端中运行时,它应在终端中运行本地服务器。接下来,从该服务器复制* Running on http://地址并将其粘贴到浏览器中以打开绘图。最有可能是http://127.0.0.1:8050/。资源:123。 (Python 3.6.6

重要提示:请注意,要使滑块起作用,必须将文本框值重置为“ 0”(零)。

导入库

import numpy as np
import pandas as pd
from plotly import __version__
import plotly.offline as pyo
import plotly.graph_objs as go

import dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output

创建Dash应用

app = dash.Dash()
app.layout = html.Div(
      html.Div([
            html.Div([html.H5("Level"),

                    dcc.Slider(id='slider_input',
                                min=0,
                                max=1,
                                step=0.005,
                                value=0.1,
                    )],style={'width': '200'}
                ),

            html.Div(style={'height': '10'}),

            html.Div(dcc.Input( id='text_input',
                        placeholder='Enter a value...',
                        type='text',
                        value=0.0
                    ),style={'width': '50'}),

            dcc.Graph(id='example',
                     figure={'data':[{'x':[1,2],
                                      'y':[0,1],
                                      'type':'bar',
                                      'marker':dict(color='#ffbf00')
                                     }],
                              'layout': go.Layout(title='Plot',
                                                  #xaxis = list(range = c(2, 5)),
                                                  yaxis=dict(range=[0, 1])
                                                   )
                               })

          ], style={'width':'500', 'height':'200','display':'inline-block'})
)

# callback - 1 (from slider)
@app.callback(Output('example', 'figure'),
             [Input('slider_input', 'value'),
             Input('text_input', 'value')])

def update_plot(slider_input, text_input):
    if (float(text_input)==0.0):
        q = float(slider_input)
    else:
        q = float(text_input)

    figure = {'data': [go.Bar(x=[1,2],
                              y=[q, 1-q],
                              marker=dict(color='#ffbf00'),
                              width=0.5
                       )],
              'layout': go.Layout(title='plot',
                                  #xaxis = list(range = c(2, 5)),
                                  yaxis=dict(range=[0, 1])
                                )
            }
    return figure

运行服务器

if __name__ == '__main__':
    app.run_server()

输出

enter image description here

编辑-1 ......................................

仅具有滑块的图

下面的代码使用了不带破折号的绘图。该图与滑块互动。请注意,此代码没有用于更改绘图的文本输入(如上所述)。但是,下图应使用滑块进行更新,而无需“释放”滑块以查看更新。在此绘图中,创建了单独的迹线以进行绘图。

导入库

import pandas as pd
import numpy as np
from plotly import __version__
%matplotlib inline

import json
import plotly.offline as pyo
import plotly.graph_objs as go
from plotly.tools import FigureFactory as FF

import cufflinks as cf
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot 
init_notebook_mode(connected=True)

init_notebook_mode(connected=True)
cf.go_offline()

创建跟踪

traces = []
q = np.linspace(0,1, 100)
for i in range(0,len(q)):
    trace = dict(
                type = 'bar',
                visible = False,
                x=[1, 2],
                y=[q[i], 1 - q[i]],
                marker=dict(color='#ffbf00'),
                width=0.5
             )
    traces.append(trace)

traces[0]['visible'] = 'True'

创建滑块

steps=[]
for i in range(len(traces)):
    step = dict(
        method = 'restyle',  
        args = ['visible', [False] * len(traces)],
        label=""
    )
    step['args'][1][i] = True # Toggle i'th trace to "visible"
    steps.append(step)

sliders = [dict(
    active = 10,
    currentvalue = {"prefix": "Level: "},
    #pad = {"t": 50},
    steps = steps

)]

创建布局

layout = go.Layout(
    width=500,
    height=500,
    autosize=False,
    yaxis=dict(range=[0, 1])
)

layout['sliders'] = sliders

地势图

fig = go.Figure(data=traces, layout=layout)

#pyo.iplot(fig, show_link=False) # run this line to view inline in Jupyter Notebook
pyo.plot(fig, show_link=False) # run this line to view in browser 

enter image description here

答案 1 :(得分:0)

从Plotly 3.0开始,可以通过以下方式实现(在JupyterLab中):

import plotly.graph_objs as go
from ipywidgets import interact

(对于Jupyter笔记本,我认为您仍然需要from plotly.offline import init_notebook_mode, iplotinit_notebook_mode(connected=True)

fig = go.FigureWidget()
bar = fig.add_bar(x=['x', '1-x'])
fig.layout = dict(yaxis=dict(range=[0,1]), height=600)

@interact(x=(0, 1, 0.01))
def update(x=0.3):
    with fig.batch_update():
        bar.y=[x, 1-x]
fig

enter image description here