我正在尝试使用初始值求解测地线方程:
以上是两个ODE的系统。在代码中,x 1 = T(s)
和x 2 = P(s)
和Γ a bc < / sub> = Ga(a,b,c)
。
我的代码如下所示:
from gravipy import *
from sympy import *
def distance(t1,p1,t2,p2):
init_printing()
R = 1737
dimensions = 2
t,p = symbols("t p")
x = Coordinates("x",[t,p])
Metric = diag(R**2, R**2*sin(t)**2)
g = MetricTensor("g", x, Metric)
Ga = Christoffel("Ga", g)
T,P = symbols("T P", cls=Function)
s = symbols("s")
ics = {T(1):t1, T(2):t2, P(1):p1, P(2):p2}
system=[]
coords = [T(s),P(s)]
for a in range(dimensions):
eq = coords[a].diff(s,s)
for b in range(dimensions):
for c in range(dimensions):
christ = Ga(a+1,b+1,c+1).replace("t","T(s)")
eq += christ * coords[b].diff(s) * coords[c].diff(s)
system.append(Eq(eq,0))
print(system)
T,P = dsolve(system, [T(s), P(s)], ics=ics)
print(T,P)
coords=[T(s),P(s)]
integral = 0
for mu in range(dimensions):
for nu in range(dimensions):
integral += g(mu,nu).replace("t","T(s)") * coords[mu].diff(s) * coords[nu].diff(s)
print(integrate(sqrt(integral), (s, 1, 2)))
distance(1,1,2,2)
但是,当我运行程序时,它会生成方程式系统:
[Eq(-3017169*sin(2*T(s))*Derivative(P(s), s)**2/2 + Derivative(T(s), s, s), 0), Eq(3017169*sin(2*T(s))*Derivative(P(s), s)*Derivative(T(s), s) + Derivative(P(s), s, s), 0)]
或更可读:
,但是在运行dsolve()
时失败,并显示错误:
File "C:\Users\user\AppData\Local\Programs\Python\Python36\lib\site-packages\sympy\solvers\ode.py", line 584, in dsolve
match = classify_sysode(eq, func)
File "C:\Users\user\AppData\Local\Programs\Python\Python36\lib\site-packages\sympy\solvers\ode.py", line 1377, in classify_sysode
if not order[func]:
KeyError: P(s)
在P(s)
和T(s)
之间切换的位置。似乎在对ODE进行分类时会发生错误,这是否意味着sympy无法求解方程式?
答案 0 :(得分:1)
请检查文档,但我相信dsolve用于使用线性代数和LU分解求解方程组。
我认为您想要一种Runge Kutta 5阶积分方法-查看ode。
您有四个耦合的一阶ODE:
dM/ds = d^2T/ds^2 = your first equation
dN/ds = d^2P/ds^2 = your second equation
dT/ds = M
dP/ds = N