我正尝试通过将describe编写为SQL查询来验证DataFrame的数据类型,但是每次我将datetime作为字符串获取时。
1。首先,我尝试使用以下代码:
SparkSession sparkSession=new SparkSession.Builder().getOrCreate();
Dataset<Row> df=sparkSession.read().option("header","true").option("inferschema","true").format("csv").load("/user/data/*_ecs.csv");
try {
df.createTempView("data");
Dataset<Row> sqlDf=sparkSession.sql("Describe data");
sqlDf.show(300,false);
Output:
+-----------------+---------+-------+
|col_name |data_type|comment|
+-----------------+---------+-------+
|id |int |null |
|symbol |string |null |
|datetime |string |null |
|side |string |null |
|orderQty |int |null |
|price |double |null |
+-----------------+---------+-------+
我也尝试了自定义模式,但在这种情况下,我执行除描述表以外的任何查询时都会遇到异常:
SparkSession sparkSession=new SparkSession.Builder().getOrCreate(); Dataset<Row>df=sparkSession.read().option("header","true").schema(customeSchema).format("csv").load("/use/data/*_ecs.csv");
try {
df.createTempView("trade_data");
Dataset<Row> sqlDf=sparkSession.sql("Describe trade_data");
sqlDf.show(300,false);
Output:
+--------+---------+-------+
|col_name|data_type|comment|
+--------+---------+-------+
|datetime|timestamp|null |
|price |double |null |
|orderQty|double |null |
+--------+---------+-------+
但是,如果我尝试任何查询,则会得到以下执行:
Dataset<Row> sqlDf=sparkSession.sql("select DATE(datetime),avg(price),avg(orderQty) from data group by datetime");
java.lang.IllegalArgumentException
at java.sql.Date.valueOf(Date.java:143)
at org.apache.spark.sql.catalyst.util.DateTimeUtils$.stringToTime(DateTimeUtils.scala:137)
如何解决?
答案 0 :(得分:0)
为什么Inferschema无法正常工作?
如果您不想提交自己的架构,一种方法是:
Dataset<Row> df = sparkSession.read().format("csv").option("header","true").option("inferschema", "true").load("example.csv");
df.printSchema(); // check output - 1
df.createOrReplaceTempView("df");
Dataset<Row> df1 = sparkSession.sql("select * , Date(datetime) as datetime_d from df").drop("datetime");
df1.printSchema(); // check output - 2
====================================
output - 1:
root
|-- id: integer (nullable = true)
|-- symbol: string (nullable = true)
|-- datetime: string (nullable = true)
|-- side: string (nullable = true)
|-- orderQty: integer (nullable = true)
|-- price: double (nullable = true)
output - 2:
root
|-- id: integer (nullable = true)
|-- symbol: string (nullable = true)
|-- side: string (nullable = true)
|-- orderQty: integer (nullable = true)
|-- price: double (nullable = true)
|-- datetime_d: date (nullable = true)
如果要投射的字段数量不多,我会选择此方法。
如果要提交自己的架构:
List<org.apache.spark.sql.types.StructField> fields = new ArrayList<>();
fields.add(DataTypes.createStructField("datetime", DataTypes.TimestampType, true));
fields.add(DataTypes.createStructField("price",DataTypes.DoubleType,true));
fields.add(DataTypes.createStructField("orderQty",DataTypes.DoubleType,true));
StructType schema = DataTypes.createStructType(fields);
Dataset<Row> df = sparkSession.read().format("csv").option("header", "true").schema(schema).load("example.csv");
df.printSchema(); // output - 1
df.createOrReplaceTempView("df");
Dataset<Row> df1 = sparkSession.sql("select * , Date(datetime) as datetime_d from df").drop("datetime");
df1.printSchema(); // output - 2
======================================
output - 1:
root
|-- datetime: timestamp (nullable = true)
|-- price: double (nullable = true)
|-- orderQty: double (nullable = true)
output - 2:
root
|-- price: double (nullable = true)
|-- orderQty: double (nullable = true)
|-- datetime_d: date (nullable = true)
由于它是从时间戳到日期的重新转换列,因此我没有看到这种方法的太多使用。但是仍然可以将其放在这里以备将来使用。