我正在努力寻找数据帧中的某种移动平均值。该公式将根据要为其计算的行数而变化。实际情况是我需要计算Z列的地方。
编辑2:
以下是我正在使用的实际数据
Date Open High Low Close
0 01-01-2018 1763.95 1763.95 1725.00 1731.35
1 02-01-2018 1736.20 1745.80 1725.00 1743.20
2 03-01-2018 1741.10 1780.00 1740.10 1774.60
3 04-01-2018 1779.95 1808.00 1770.00 1801.35
4 05-01-2018 1801.10 1820.40 1795.60 1809.95
5 08-01-2018 1816.00 1827.95 1800.00 1825.00
6 09-01-2018 1823.00 1835.00 1793.90 1812.05
7 10-01-2018 1812.05 1823.00 1801.40 1816.55
8 11-01-2018 1825.00 1825.05 1798.55 1802.10
9 12-01-2018 1805.00 1820.00 1794.00 1804.95
10 15-01-2018 1809.90 1834.45 1792.45 1830.00
11 16-01-2018 1835.00 1857.45 1826.10 1850.25
12 17-01-2018 1850.00 1852.45 1826.20 1840.50
13 18-01-2018 1840.50 1852.00 1823.50 1839.00
14 19-01-2018 1828.25 1836.35 1811.00 1829.50
15 22-01-2018 1816.50 1832.55 1805.50 1827.20
16 23-01-2018 1825.00 1825.00 1782.25 1790.15
17 24-01-2018 1787.80 1792.70 1732.15 1737.50
18 25-01-2018 1739.90 1753.40 1720.00 1726.40
19 29-01-2018 1735.15 1754.95 1729.80 1738.70
我正在使用的代码段如下:
from datetime import date
from nsepy import get_history
import csv
import pandas as pd
import numpy as np
import requests
from datetime import timedelta
import datetime as dt
import pandas_datareader.data as web
import io
df = pd.read_csv('ACC.CSV')
idx = df.reset_index().index
df['Change'] = df['Close'].diff()
df['Advance'] = np.where(df.Change > 0, df.Change,0)
df['Decline'] = np.where(df.Change < 0, df.Change*-1, 0)
conditions = [idx < 14, idx == 14, idx > 14]
values = [0, (df.Advance.rolling(14).sum())/14, (df.Avg_Gain.shift(1) * 13 + df.Advance)/14]
df['Avg_Gain'] = np.select(conditions, values)
df['Avg_Loss'] = (df.Decline.rolling(14).sum())/14
df['RS'] = df.Avg_Gain / df.Avg_Loss
df['RSI'] = np.where(df['Avg_Loss'] == 0, 100, 100-(100/(1+df.RS)))
df.drop(['Change', 'Advance', 'Decline', 'Avg_Gain', 'Avg_Loss', 'RS'], axis=1)
print(df.head(20))
以下是我得到的错误:
Traceback (most recent call last):
File "C:/Users/Lenovo/Desktop/Python/0.Chart Patterns/Z.Sample Code.py", line 20, in <module>
values = [0, (df.Advance.rolling(14).sum())/14, (df.Avg_Gain.shift(1) * 13 + df.Advance)/14]
File "C:\Users\Lenovo\AppData\Local\Programs\Python\Python36\lib\site-packages\pandas\core\generic.py", line 3614, in __getattr__
return object.__getattribute__(self, name)
AttributeError: 'DataFrame' object has no attribute 'Avg_Gain'
编辑3:以下是预期的输出,然后我还将写下公式。原始DF由“日期开盘高低和收盘价”列组成。
Advance and Decline –
• If the difference between current & previous is +ve then Advance = difference and Decline = 0
• If the difference between current & previous is –ve then Advance = 0 and Decline = -1 * difference
Avg_Gain:
• If index is < 13 then Avg_Gain = 0
• If index = 13 then Avg_Gain = Average of 14 periods
• If index > 13, then Avg_Gain = (Avg_Gain(previous-row) * 13 + Advance(current-row) )/14
Avg_Loss:
• If index is < 13 then Avg_Loss = 0
• If index = 13 then Avg_Loss = Average of Advance of 14 periods
• If index > 13, then Avg_Loss = (Avg_Loss(previous-row) * 13 + Decline(current-row) )/14
RS:
• If index < 13 then RS = 0
• If Index >= 13 then RS = Avg_Gain/Avg_Loss
RSI = 100-(100/(1 + RS))
我希望这会有所帮助。
答案 0 :(得分:2)
您的代码有误,因为您在创建df.Avg_Gain
时使用了df.Avg_Gain
。是
values = [0, (df.Advance.rolling(14).sum())/14, (df.Avg_Gain.shift(1) * 13 + df.Advance)/14]
df['Avg_Gain'] = np.select(conditions, values)
我将代码的这一部分更改为以下内容:
up = df.Advance.rolling(14).sum()/14
values = [0, up, (up.shift(1) * 13 + df.Advance)/14]
输出(idx> = 14):
Date Open High Low Close RSI
14 2018-01-19 1828.25 1836.35 1811.00 1829.50 75.237850
15 2018-01-22 1816.50 1832.55 1805.50 1827.20 72.920021
16 2018-01-23 1825.00 1825.00 1782.25 1790.15 58.793750
17 2018-01-24 1787.80 1792.70 1732.15 1737.50 40.573938
18 2018-01-25 1739.90 1753.40 1720.00 1726.40 31.900045
19 2018-01-29 1735.15 1754.95 1729.80 1738.70 33.197678
尽管如此,应该有更好的方法。如果我找到一个更好的解决方案,我将对其进行更新。让我知道此数据是否正确。
更新: 您还需要更正“ Avg_loss”的计算::
down = df.Decline.rolling(14).sum()/14
down_values = [0, down, (down.shift(1) * 13 + df.Decline)/14]
df['Avg_Loss'] = np.select(conditions, down_values)
更新2 :在提供了预期数据之后。 因此,我唯一可以做到这一点的方法就是循环-不确定是否可以这样做-也许我不知道某些熊猫功能。
因此,首先要像以前一样设置Avg_Gain
和Avg_Loss
:
您只需要稍作更改即可:
conditions = [idx<13, idx==13, idx>13]
up = df.Advance.rolling(14).sum()/14
values = [0, up, 0]
df['Avg_Gain'] = np.select(conditions, values)
down = df.Decline.rolling(14).sum()/14
down_values = [0, down, 0]
df['Avg_Loss'] = np.select(conditions, d_values)
我已更改您的条件以对索引13进行分割-因为这是基于预期输出的结果。
运行此代码后,将使用先前的Avg_Gain
和Avg_Loss
的值,从索引14
填充Agv_Gain
和Avg_Loss
的值。 / p>
p=14
for i in range(p, len(df)):
df.at[i, 'Avg_Gain'] = ((df.loc[i-1, 'Avg_Gain'] * (p-1)) + df.loc[i, 'Advance']) / p
df.at[i, 'Avg_Loss'] = ((df.loc[i-1, 'Avg_Loss'] * (p-1)) + df.loc[i, 'Decline']) / p
输出:
df[13:][['Date','Avg_Gain', 'Avg_Loss', 'RS', 'RSI']]
Date Avg_Gain Avg_Loss RS RSI
13 2018-01-18 10.450000 2.760714 3.785252 79.102460
14 2018-01-19 9.703571 3.242092 2.992997 74.956155
15 2018-01-22 9.010459 3.174800 2.838119 73.945571
16 2018-01-23 8.366855 5.594457 1.495562 59.928860
17 2018-01-24 7.769222 8.955567 0.867530 46.453335
18 2018-01-25 7.214278 9.108741 0.792017 44.196960
19 2018-01-29 7.577544 8.458116 0.895890 47.254330
答案 1 :(得分:2)
您可以使用ewm
进行操作,也可以查看there以获得更多说明。您会发现ewm
可用于计算 y(row)=α* x(row)+(1-α)* y(row-1),例如 y 是列Avg_Gain, x 是Advance列的值,α是赋予 x(row)的权重
# define the number for the window
win_n = 14
# create a dataframe df_avg with the non null value of the two columns
# Advance and Decline such as the first is the mean of the 14 first values and the rest as normal
df_avg = (pd.DataFrame({'Avg_Gain': np.append(df.Advance[:win_n].mean(), df.Advance[win_n:]),
'Avg_Loss': np.append(df.Decline[:win_n].mean(), df.Decline[win_n:])},
df.index[win_n-1:])
.ewm(adjust=False, alpha=1./win_n).mean()) # what you need to calculate with your formula
# create the two other columns RS and RSI
df_avg['RS'] = df_avg.Avg_Gain / df_avg.Avg_Loss
df_avg['RSI'] = 100.-(100./(1. + df_avg['RS']))
和df_avg
如下:
Avg_Gain Avg_Loss RS RSI
13 10.450000 2.760714 3.785252 79.102460
14 9.703571 3.242092 2.992997 74.956155
15 9.010459 3.174800 2.838119 73.945571
16 8.366855 5.594457 1.495562 59.928860
17 7.769222 8.955567 0.867530 46.453335
18 7.214278 9.108741 0.792017 44.196960
19 7.577544 8.458116 0.895890 47.254330
您可以join
将其保存为原始数据,并将fillna
设置为0:
df = df.join(df_avg).fillna(0)