我一直遵循Chollet的R深度学习方法(fitting RNNs to time series data)来拟合RNN以进行时间序列预测。
model <- keras_model_sequential() %>%
layer_gru(units = 32,
dropout = 0.1,
recurrent_dropout = 0.5,
return_sequences = TRUE,
input_shape = list(NULL, dim(data)[[-1]])) %>%
layer_gru(units = 64, activation = "relu",
dropout = 0.1,
recurrent_dropout = 0.5) %>%
layer_dense(units = 1)
model %>% compile(
optimizer = optimizer_rmsprop(),
loss = "mae"
)
history <- model %>% fit_generator(
train_gen,
steps_per_epoch = 500,
epochs = 40,
validation_data = val_gen,
validation_steps = val_steps
)
此处使用以下方法生成,训练,验证和测试数据:
lookback <- 1440
step <- 6
delay <- 144
batch_size <- 128
train_gen <- generator(
data,
lookback = lookback,
delay = delay,
min_index = 1,
max_index = 200000,
shuffle = TRUE,
step = step,
batch_size = batch_size
)
val_gen = generator(
data,
lookback = lookback,
delay = delay,
min_index = 200001,
max_index = 300000,
step = step,
batch_size = batch_size
)
test_gen <- generator(
data,
lookback = lookback,
delay = delay,
min_index = 300001,
max_index = NULL,
step = step,
batch_size = batch_size
)
# How many steps to draw from val_gen in order to see the entire validation set
val_steps <- (300000 - 200001 - lookback) / batch_size
# How many steps to draw from test_gen in order to see the entire test set
test_steps <- (nrow(data) - 300001 - lookback) / batch_size
在此之后,我阅读了Keras文档并找到了预测功能。要找到测试数据的预测,请执行以下操作:
m <- model %>% evaluate_generator(test_gen, steps = test_steps)
m
但是,它仅给出测试数据的损失值。
我的问题是,如何像在其他时间序列方法中一样获得测试数据集中每个点的预测?如何绘制这些预测值和实际值?
答案 0 :(得分:3)
在我看来,您需要重新定义generator
,仅需要获取samples
作为输出。按照您的示例:
# generator function
generator <- function(data, lookback, delay, min_index, max_index,
shuffle = FALSE, batch_size = 128, step = 6) {
if (is.null(max_index))
max_index <- nrow(data) - delay - 1
i <- min_index + lookback
function() {
if (shuffle) {
rows <- sample(c((min_index+lookback):max_index), size = batch_size)
} else {
if (i + batch_size >= max_index)
i <<- min_index + lookback
rows <- c(i:min(i+batch_size-1, max_index))
i <<- i + length(rows)
}
samples <- array(0, dim = c(length(rows),
lookback / step,
dim(data)[[-1]]))
targets <- array(0, dim = c(length(rows)))
for (j in 1:length(rows)) {
indices <- seq(rows[[j]] - lookback, rows[[j]]-1,
length.out = dim(samples)[[2]])
samples[j,,] <- data[indices,]
targets[[j]] <- data[rows[[j]] + delay,2]
}
list(samples) # just the samples, (quick and dirty solution, I just removed targets)
}
}
# test_gen is the same
test_gen <- generator(
data,
lookback = lookback,
delay = delay,
min_index = 300001,
max_index = NULL,
step = step,
batch_size = batch_size
)
现在您可以致电predict_generator
:
preds <- model %>% predict_generator(test_gen, steps = test_steps)
但是现在您需要对它们进行去归一化,因为在拟合之前已对每个变量进行了缩放。
denorm_pred = preds * std + mean
请注意,std
和mean
应该仅根据T (degC)
数据上的train
进行计算,否则会过度拟合。 / p>