从无类型的CC术语及其CC类型恢复CC术语的干净算法是什么?

时间:2018-07-16 00:16:55

标签: haskell lambda-calculus type-theory

假设我有一个无类型的术语,例如:

data Term = Lam Term | App Term Term | Var Int

-- λ succ . λ zero . succ zero
c1 = (Lam (Lam (App (Var 1) (Var 0)))

-- λ succ . λ zero . succ (succ zero)
c2 = (Lam (Lam (App (Var 1) (App (Var 1) (Var 0))))

-- λ succ . λ zero . succ (succ (succ zero))
c3 = (Lam (Lam (App (Var 1) (App (Var 1) (App (Var 1) (Var 0)))))

-- λ cons . λ nil . cons 1 (cons 2 (cons 3 nil))
term_untyped = (Lam (Lam (App (App (Var 1) c1) (App (App (Var 1) c2 (App (App (Var 1) c3) Nil) 

及其CC类型:

data Type = Set | All Type Type | Var Int

-- ∀ (P : *) -> ∀ (Succ : P -> P) -> ∀ (Zero : P) -> P
nat = All(Set, All(All(Var(0), Var(1)), All(Var(0), Var(1))))

-- ∀ (P : *) -> ∀ (Cons : x -> P -> P) -> ∀ (Nil : P) -> P
list x = All(Set, All(All(x, All(Var(0), Var(1))), All(Var(0), Var(0))))

-- term_type
term_type = list nat

是否有一种干净的算法可以恢复与未输入类型相对应的CC项?即

data CCTerm 
   = Lam CCTerm CCTerm 
   | All CCTerm CCTerm 
   | App CCTerm CCTerm 
   | Set 
   | Var Int

term_typed :: Term -> CCTerm
term_typed = from_untyped term_type term_untyped

-- As the result, typed_term would be:
-- λ (P : *) ->
-- λ (Cons : ∀ (x : (∀ (Q : *) -> (Q -> Q) -> Q -> Q)) -> P -> P) ->
-- λ (Nil : P) ->
-- ( Cons (λ (Q : *) -> λ (Succ : Q -> Q) -> (Zero : Q) -> Succ Zero)
-- ( Cons (λ (Q : *) -> λ (Succ : Q -> Q) -> (Zero : Q) -> Succ (Succ Zero))
-- ( Cons (λ (Q : *) -> λ (Succ : Q -> Q) -> (Zero : Q) -> Succ (Succ (Succ Zero)))
--   Nil)))

我尝试了一些方法,但是很快发现如何传递类型并不明显。具体来说,Lam案例似乎要求一个forall类型并将其附加到上下文中,App案例的功能似乎产生该参数使用的forall类型,而Var案例似乎可以查询上下文类型。这种不对称使我的代码有些混乱,所以我想知道是否有明显的方法来实现这一点。

2 个答案:

答案 0 :(得分:4)

您不能在输入中包含beta redexe,因为您原则上不能推断lambda的类型,但是否则,它只是标准的双向类型检查。如果知道输入的类型正确,则可以跳过转换检查。伪代码:

check : Term → Type → Cxt → CCTerm
check (λ x. t) ((x : A) → B) Γ = λ (x : A). check t B (Γ, x : A)
check t        A             Γ = fst (infer t Γ) -- no conv check

infer : Term → Cxt → (CCTerm, Type)
infer (λ x.t) Γ = undefined
infer x       Γ = (x, lookup x Γ)
infer (t u)   Γ = (t' u', B[x ↦ u'])
  where (t', ((x : A) → B)) = infer t Γ
        u' = check u A Γ

(将其转换为de Bruijn索引,并可以更快地进行All替换)。我发现StarAll不在Term中有点奇怪,但是它们也可以微不足道地包含在infer中。

答案 1 :(得分:1)

您似乎在询问比系统F(known to be undecidable)更具表现力的系统中的类型推断。