当我尝试运行以下代码时,我不断收到错误消息:
无法在“ id”处将null的“ value”属性设置为
我试图将属性从value
更改为innerHTML
,但这没有用。如果您能帮助我,我将不胜感激。谢谢!
<div class="input-field s6 col" style="color: white; background-color:transparent;">
<input id="avatar_url" id="ipoza" type="text" onfocus="style='background-color:white;'" onblur="style='background-color:transparent'" value="http://i01.c.aliimg.com/img/ibank/2014/101/288/1614882101_2028072840.jpg"> <label for="avatar_url"><p>Poza de Profil</p></label>
</div>
<button onclick="i()"></button>
<script type="text/javascript">
function i() {
document.getElementById("ipoza").value = "Link";
}
</script>
答案 0 :(得分:0)
每个元素只能有一个import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import os
train_path='/Users/David/Deskt...'
batch_size_train=100
num_epochs=1
tf.logging.set_verbosity(tf.logging.INFO)
sess=tf.Session()
#Convolutional Model
def cnn_model(features,labels,mode):
#Capa de ingreso
input_layer=tf.reshape(features["x"],[-1,224,224,3])
#Capa convolucional 1........
conv1=tf.layers.conv2d(
inputs=input_layer,
filters=64,
kernel_size=[10,10],
padding="same",
activation=tf.nn.relu,
name="Convolucion_1")
#Pooling 1.........
pool1=tf.layers.max_pooling2d(inputs=conv1,pool_size=[2,2],strides=2,name="Pool_1")
conv2=tf.layers.conv2d(
inputs=pool1,
filters=128,
kernel_size=[10,10],
padding="same",
activation=tf.nn.relu,
name="Convolucion_2")
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2,name="Pool_2")
conv3=tf.layers.conv2d(
inputs=pool2,
filters=192,
kernel_size=[10,10],
padding="same",
activation=tf.nn.relu,
name="Convolucion_3")
pool3 = tf.layers.max_pooling2d(inputs=conv3, pool_size=[2, 2], strides=2,name="Pool_3")
conv4=tf.layers.conv2d(
inputs=pool3,
filters=256,
kernel_size=[10,10],
padding="same",
activation=tf.nn.relu,
name="Convolucion_4")
pool4 = tf.layers.max_pooling2d(inputs=conv4, pool_size=[2, 2], strides=2,name="Pool_4")
conv5=tf.layers.conv2d(
inputs=pool4,
filters=320,
kernel_size=[10,10],
padding="same",
activation=tf.nn.relu,
name="Convolucion_5")
pool5 = tf.layers.max_pooling2d(inputs=conv5, pool_size=[2, 2], strides=2,name="Pool_5")
pool5_flat=tf.reshape(pool5,[-1,7*7*320],name="Flat_Pool")
#Deep neural network..............
dense=tf.layers.dense(inputs=pool5_flat,units=10000,activation=tf.nn.relu,name="Capa_1")
dense1=tf.layers.dense(inputs=dense,units=7000,activation=tf.nn.relu,name="Capa_2")
dense2=tf.layers.dense(inputs=dense1,units=4000,activation=tf.nn.relu,name="Capa_3")
dense3=tf.layers.dense(inputs=dense2,units=1000,activation=tf.nn.relu,name="Capa_4")
dense4=tf.layers.dense(inputs=dense3,units=500,activation=tf.nn.relu,name="Capa_5")
logits=tf.layers.dense(inputs=dense4,units=2,name="Capa_final")
onehot_labels = tf.one_hot(indices=labels, depth=2)
t=tf.nn.softmax(logits, name="softmax_tensor")
loss = tf.losses.softmax_cross_entropy(onehot_labels=onehot_labels, logits=logits)
tf.summary.scalar('loss',loss)
ds=tf.train.SummarySaverHook(save_steps=1,output_dir="/Users/David/Desktop/David/Tesis/Practica/Programas/CNN/Model_Chekpoint",summary_op=tf.summary.merge_all())
loss_hook = tf.train.LoggingTensorHook(tensors={"loss":loss}, every_n_iter=1)
if mode==tf.estimator.ModeKeys.TRAIN:
optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op=optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode,loss=loss,train_op=train_op,training_hooks=[ds,loss_hook])
def read_file(filename_queue):
#Funcion para leer el archivo tf.record, y retornamos el next recrod
reader=tf.TFRecordReader()
_,serialized_example=reader.read(filename_queue)
#Se decodifica el tf.record retornando un diccionario
feature={'train/image':tf.FixedLenFeature([],tf.string),
'train/label':tf.FixedLenFeature([],tf.int64)}
features=tf.parse_single_example(serialized_example,features=feature,name="Decodificacion_Parse")
#Convertimos el string a numeros de los decodificados features
image=tf.decode_raw(features['train/image'],tf.float32,name="imagenes_decod")* (1 / 255.0)
#Convertimos a datos
label=tf.cast(features['train/label'],dtype=tf.int32,name="label_decod")
#Reshape data
image=tf.reshape(image,[224,224,3])
return image,label
def input_pipeline(filenames,batch_size):
#Creacion de una lista de los archivos
filename_queue=tf.train.string_input_producer([filenames],num_epochs=1,shuffle=True,name="Creacion_lista_archiv")
images,labels=read_file(filename_queue)
#Mezclar (shuffle) los datos de entrada
min_after_dequeue=100
capacity=min_after_dequeue+3*batch_size
images,labels=tf.train.shuffle_batch([images,labels],batch_size=batch_size,capacity=capacity,num_threads=2,min_after_dequeue=min_after_dequeue,name="Shuffle_data_in")
return images,labels
def main(unused_argv):
#Lectura y Decodificacion de datos
img_train,lbl_train=input_pipeline(train_path,batch_size_train)
#Estimator - Modelo
gun_detector=tf.estimator.Estimator(model_fn=cnn_model,model_dir="/Users/David/Desktop/David/Tesis/Practica/Programas/CNN/Model_Chekpoint")
#Inicializacion de variables y run de la session
init_op=tf.group(tf.global_variables_initializer(),tf.local_variables_initializer())
sess.run(init_op)
#Corremos las filas(queue) que se crearon en el grafico computacional
coord = tf.train.Coordinator()
threads=tf.train.start_queue_runners(sess=sess,coord=coord)
try:
while not coord.should_stop():
img,lbl=sess.run([img_train,lbl_train])
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": img},
y=lbl,
batch_size=70,
num_epochs=None,
shuffle=True)
gun_detector.train(
input_fn=train_input_fn,
steps=5000)
except tf.errors.OutOfRangeError:
print('Done training -- epoch limit reached')
finally:
coord.request_stop()
coord.join(threads)
sess.close()
if __name__ == '__main__':
tf.app.run()
。您的id
有2个input
,这是不允许的。只需给它id
中的单个id
,就可以用ipoza
进行选择。
document.getElementById("ipoza")