Keras自定义层并渴望执行

时间:2018-07-14 18:26:31

标签: python tensorflow keras

我有一个带有一个自定义层的简单模型,该模型在正常情况下可以正常工作。 当我通过tf.enable_eager_execution()切换到急切执行时,我陷入了一个奇怪的错误。

这是到目前为止的代码:

import numpy as np
import tensorflow as tf
import tensorflow.keras.backend as K
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Layer, Input
from tensorflow.keras.losses import kullback_leibler_divergence

tf.enable_eager_execution()

class ClusteringLayer(Layer):
    def __init__(self, output_dim, input_dim=None, alpha=1.0, **kwargs):
        self.output_dim = output_dim
        self.input_dim = input_dim
        self.alpha = alpha
        super(ClusteringLayer, self).__init__(**kwargs)

    def build(self, input_shape):
        self.W = self.add_weight(name='kernel', shape=(self.output_dim, input_shape[1]), initializer='uniform', trainable=True)
        super(ClusteringLayer, self).build(input_shape)

    def call(self, x, mask=None):
        q = 1.0/(1.0 + K.sqrt(K.sum(K.square(K.expand_dims(x, 1) - self.W), axis=2))**2 /self.alpha)
        q = q**((self.alpha+1.0)/2.0)
        q = K.transpose(K.transpose(q)/K.sum(q, axis=1))
        return q

    def compute_output_shape(self, input_shape):
        return (input_shape[0], self.output_dim)

def clustering_loss(y_true, y_pred): 
    a = K.square(y_pred) / K.sum(y_pred, axis=0) 
    p = K.transpose(K.transpose(a) / K.sum(a, axis=1))
    loss = kullback_leibler_divergence(p, y_pred)
    return loss

input1 = Input(shape=(10,), name="input")
out = ClusteringLayer(output_dim = 5, name='clustering')(input1)
model = Model(inputs=input1, outputs=out) 
model.compile(optimizer=tf.train.AdamOptimizer(1e-3), loss={'clustering' : clustering_loss})
X = np.random.random((20, 10)).astype(np.float32)
Y = np.random.random((20, 5)).astype(np.float32)
model.fit(x={'input' : X}, y={'clustering' : Y}, batch_size=1, epochs=10)

错误消息与“ fit”功能有关:

AssertionError: Could not compute output DeferredTensor('None', shape=(5,), dtype=float32)

当我尝试检查自定义层的输出时,我惊讶地发现该层正在生成两个输出。第一个是模棱两可的,是不希望的。

代码:

input1 = Input(shape=(10,), name="input")
layer = ClusteringLayer(output_dim = 5, name='clustering')
out = layer(input1)
print(out)

输出:

[<DeferredTensor 'None' shape=(?,) dtype=float32>, <DeferredTensor 'None' shape=(5,) dtype=float32>]

即使我使用简单的custom layer from the Keras documentation更改了自定义图层,也遇到了相同的错误:

AssertionError: Could not compute output DeferredTensor('None', shape=(5,), dtype=float32)

1 个答案:

答案 0 :(得分:1)

我在GitHub上问了这个问题,因为它看起来更像是个错误。 他们建议使用一种解决方法,直到解决内部问题为止。

我从这里引用:github

  

作为解决方法,您可以包装由返回的输出形状   TensorShape中的compute_output_shape。例如:   TensorShape((input_shape [0],self.output_dim))。让我知道这是否   有效。