从Spark MLlib的CrossValidator(在Scala中)查看不同参数的预测错误

时间:2018-07-13 14:52:18

标签: scala apache-spark apache-spark-mllib databricks

我最近开始使用Spark的MLlib,并且使用Spark的CrossValidator调整模型参数已经取得了一些成功。但是我认为开始可视化模型选择过程会有所帮助。

我最终想要创建这样的图形: enter image description here

但是,由于我要使用Databricks,因此我只需要一个带有错误的DataFrame和一个参数列即可启动,然后可以对其调用DataBricks的display()函数以使其可视化。 / p>

因此,如果我们从MLlib的CrossValidation示例片段here开始:
(为简单起见,我从hashingTF.numFeatures中删除了ParamGrid

import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
import org.apache.spark.ml.linalg.Vector
import org.apache.spark.ml.tuning.{CrossValidator, ParamGridBuilder}
import org.apache.spark.sql.Row

// Prepare training data from a list of (id, text, label) tuples.
val training = spark.createDataFrame(Seq(
  (0L, "a b c d e spark", 1.0),
  (1L, "b d", 0.0),
  (2L, "spark f g h", 1.0),
  (3L, "hadoop mapreduce", 0.0),
  (4L, "b spark who", 1.0),
  (5L, "g d a y", 0.0),
  (6L, "spark fly", 1.0),
  (7L, "was mapreduce", 0.0),
  (8L, "e spark program", 1.0),
  (9L, "a e c l", 0.0),
  (10L, "spark compile", 1.0),
  (11L, "hadoop software", 0.0)
)).toDF("id", "text", "label")

// Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.
val tokenizer = new Tokenizer()
  .setInputCol("text")
  .setOutputCol("words")
val hashingTF = new HashingTF()
  .setInputCol(tokenizer.getOutputCol)
  .setOutputCol("features")
val lr = new LogisticRegression()
  .setMaxIter(10)
val pipeline = new Pipeline()
  .setStages(Array(tokenizer, hashingTF, lr))

// We use a ParamGridBuilder to construct a grid of parameters to search over.
// With 2 values for lr.regParam, this grid will have 2 parameter settings for CrossValidator to choose from.
val paramGrid = new ParamGridBuilder()
  .addGrid(lr.regParam, Array(0.1, 0.01))
  .build()

// We now treat the Pipeline as an Estimator, wrapping it in a CrossValidator instance.
// This will allow us to jointly choose parameters for all Pipeline stages.
// A CrossValidator requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
// Note that the evaluator here is a BinaryClassificationEvaluator and its default metric
// is areaUnderROC.
val cv = new CrossValidator()
  .setEstimator(pipeline)
  .setEvaluator(new BinaryClassificationEvaluator)
  .setEstimatorParamMaps(paramGrid)
  .setNumFolds(2)  // Use 3+ in practice
  .setParallelism(2)  // Evaluate up to 2 parameter settings in parallel

// Run cross-validation, and choose the best set of parameters.
val cvModel = cv.fit(training)

// Prepare test documents, which are unlabeled (id, text) tuples.
val test = spark.createDataFrame(Seq(
  (4L, "spark i j k"),
  (5L, "l m n"),
  (6L, "mapreduce spark"),
  (7L, "apache hadoop")
)).toDF("id", "text")

// Make predictions on test documents. cvModel uses the best model found (lrModel).
cvModel.transform(test)
  .select("id", "text", "probability", "prediction")
  .collect()
  .foreach { case Row(id: Long, text: String, prob: Vector, prediction: Double) =>
    println(s"($id, $text) --> prob=$prob, prediction=$prediction")
  }

如果我想查找不同参数设置的预测误差,如何从cvCrossValidator)或cvModel({{ 1}}?)

奖金问题:如何对两组参数执行相同的操作,例如是否在CrossValidatorModel上添加了交叉验证?

0 个答案:

没有答案