我有一个很大的data.table。我想只对选择的行进行汇总,但要使用所有数据(即不只是选择的行)。这是一个示例:
library(data.table)
library(lubridate)
dt = data.table(
date = seq.Date(as.Date("2017-01-01"), as.Date("2017-12-31"), by = "1 day")
)
dt$day = day(dt$date)
dt$value = rnorm(nrow(dt))
我想要的是30天的滚动平均值。通常,这可以通过以下方式完成:
library(RcppRoll)
ma30 = dt[, roll_mean(value, 30, fill = NA, align = "right"), by = day]
但是,在这种情况下,我只关心当日等于15时的滚动平均值。是否可以通过某种方式编写上面的语句,以便我可以取全部的前30个平均值天,但仅在每个月的15日?换句话说,我想使用365个数据点,但只能进行12次计算(或11次,因为无论如何第一个都是NA
。
谢谢。
答案 0 :(得分:2)
两种可能的方法:
# option 1:
dt[, roll_mn := roll_mean(value, 30, fill = NA, align = "right") * NA^(day != 15)]
# option 2:
dt[, roll_mn := ifelse(day == 15, roll_mean(value, 30, fill = NA, align = "right"), NA)]
您得到:
> dt[1:100] date day value roll_mn 1: 2017-01-01 1 -0.422983983 NA 2: 2017-01-02 2 -1.549878162 NA .... 13: 2017-01-13 13 0.712481269 NA 14: 2017-01-14 14 -0.445772094 NA 15: 2017-01-15 15 0.248979648 NA 16: 2017-01-16 16 -1.074193951 NA 17: 2017-01-17 17 -1.827261716 NA .... 44: 2017-02-13 13 1.054362321 NA 45: 2017-02-14 14 -0.148639594 NA 46: 2017-02-15 15 1.018076577 -0.1322037 47: 2017-02-16 16 -0.721586512 NA 48: 2017-02-17 17 -0.778778137 NA .... 72: 2017-03-13 13 0.565180699 NA 73: 2017-03-14 14 -0.006097837 NA 74: 2017-03-15 15 -0.438781066 0.1109928 75: 2017-03-16 16 0.688891096 NA 76: 2017-03-17 17 -0.499419195 NA .... 99: 2017-04-09 9 -0.657354771 NA 100: 2017-04-10 10 0.922903744 NA
一个更大的数据集的基准(包括@Frank在评论中提到的非等价联接选项):
# create benchmark dataset
set.seed(2018)
dt <- data.table(date = seq.Date(as.Date("0-01-01"), as.Date("2017-12-31"), by = "1 day"))
dt[, `:=` (day = day(date), value = rnorm(nrow(dt)))]
# benchmark
> system.time(dt[, v1 := roll_mean(value, 30, fill = NA, align = "right") * NA^(day != 15)])
user system elapsed
0.011 0.000 0.011
> system.time(dt[, v2 := ifelse(day == 15, roll_mean(value, 30, fill = NA, align = "right"), NA)])
user system elapsed
0.034 0.005 0.039
> system.time(dt[day == 15, v3 := dt[.SD[, .(d_dn = date - 30, d_up = date)], on=.(date > d_dn, date <= d_up), mean(value), by=.EACHI]$V1])
user system elapsed
0.043 0.001 0.044
警告:非等额联接方法还将为第一行day == 15
使用的数据:
set.seed(2018)
dt <- data.table(date = seq.Date(as.Date("2017-01-01"), as.Date("2017-12-31"), by = "1 day"))
dt[, `:=` (day = day(date), value = rnorm(nrow(dt)))]
答案 1 :(得分:0)
在dplyr
中,可以使用case_when来检查日期是否等于15,然后取滚动平均值。
library(dplyr)
library(RcppRoll)
dt %>% mutate(roll_sum = case_when(day == 15 ~ roll_mean(value, 30, align = "right", fill = NA)))