我是PySpark的初学者。我在PySpark中使用FPgrowth计算协会。我按照以下步骤操作。
from pyspark.sql.session import SparkSession
spark = SparkSession.builder.getOrCreate()
# make some test data
columns = ['customer_id', 'product_id']
vals = [
(370, 154),
(41, 40),
(109, 173),
(18, 55),
(105, 126),
(370, 121),
(41, 32323),
(109, 22),
(18, 55),
(105, 133),
(109, 22),
(18, 55),
(105, 133)
]
df = spark.createDataFrame(vals, columns)
df.show()
+-----------+----------+
|customer_id|product_id|
+-----------+----------+
| 370| 154|
| 41| 40|
| 109| 173|
| 18| 55|
| 105| 126|
| 370| 121|
| 41| 32323|
| 109| 22|
| 18| 55|
| 105| 133|
| 109| 22|
| 18| 55|
| 105| 133|
+-----------+----------+
### Prepare input data
from pyspark.sql.functions import collect_list, col
transactions = df.groupBy("customer_id")\
.agg(collect_list("product_id").alias("product_ids"))\
.rdd\
.map(lambda x: (x.customer_id, x.product_ids))
transactions.collect()
[(370, [121, 154]),
(41, [32323, 40]),
(105, [133, 133, 126]),
(18, [55, 55, 55]),
(109, [22, 173, 22])]
## Convert .rdd to spark dataframe
df2 = spark.createDataFrame(transactions)
df2.show()
+---+---------------+
| _1| _2|
+---+---------------+
|370| [121, 154]|
| 41| [32323, 40]|
|105|[126, 133, 133]|
| 18| [55, 55, 55]|
|109| [22, 173, 22]|
+---+---------------+
df3 = df2.selectExpr("_1 as customer_id", "_2 as product_id")
df3.show()
df3.printSchema()
+-----------+---------------+
|customer_id| product_id|
+-----------+---------------+
| 370| [154, 121]|
| 41| [32323, 40]|
| 105|[126, 133, 133]|
| 18| [55, 55, 55]|
| 109| [173, 22, 22]|
+-----------+---------------+
root
|-- customer_id: long (nullable = true)
|-- product_id: array (nullable = true)
| |-- element: long (containsNull = true)
## FPGrowth Model Building
from pyspark.ml.fpm import FPGrowth
fpGrowth = FPGrowth(itemsCol="product_id", minSupport=0.5, minConfidence=0.6)
model = fpGrowth.fit(df3)
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-12-aa1f71745240> in <module>()
----> 1 model = fpGrowth.fit(df3)
/usr/lib/spark/python/pyspark/ml/base.py in fit(self, dataset, params)
62 return self.copy(params)._fit(dataset)
63 else:
---> 64 return self._fit(dataset)
65 else:
66 raise ValueError("Params must be either a param map or a list/tuple of param maps, "
/usr/lib/spark/python/pyspark/ml/wrapper.py in _fit(self, dataset)
263
264 def _fit(self, dataset):
--> 265 java_model = self._fit_java(dataset)
266 return self._create_model(java_model)
267
/usr/lib/spark/python/pyspark/ml/wrapper.py in _fit_java(self, dataset)
260 """
261 self._transfer_params_to_java()
--> 262 return self._java_obj.fit(dataset._jdf)
263
264 def _fit(self, dataset):
/usr/lib/spark/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py in __call__(self, *args)
1131 answer = self.gateway_client.send_command(command)
1132 return_value = get_return_value(
-> 1133 answer, self.gateway_client, self.target_id, self.name)
1134
1135 for temp_arg in temp_args:
/usr/lib/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()
/usr/lib/spark/python/lib/py4j-0.10.4-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
317 raise Py4JJavaError(
318 "An error occurred while calling {0}{1}{2}.\n".
--> 319 format(target_id, ".", name), value)
320 else:
321 raise Py4JError(
我抬起头,但不知道出了什么问题。也许我唯一要指出的就是我将RDD转换为数据帧。
有人可以指出我做错了什么吗?
答案 0 :(得分:1)
如果您仔细检查了回溯,就会发现问题的根源:
Caused by: org.apache.spark.SparkException: Items in a transaction must be unique but got ....
将collect_list
替换为collect_set
,问题将得到解决。
答案 1 :(得分:1)
好吧,我刚刚意识到pyspark.ml.fpm中的FPGrowth
采用pyspark数据帧,而不是rdd。因此,上述方法将我的数据集转换为rdd。
我可以通过使用groupby起诉PySpark collect_set
列表来避免这种情况,以获取数据帧并继续传递。
from pyspark.sql.session import SparkSession
# instantiate Spark
spark = SparkSession.builder.getOrCreate()
# make some test data
columns = ['customer_id', 'product_id']
vals = [
(370, 154),
(370, 40),
(370, 173),
(41, 55),
(41, 126),
(41, 121),
(41, 321),
(105, 22),
(105, 55),
(105, 133),
(109, 22),
(109, 55),
(109, 133)
]
# create DataFrame
df = spark.createDataFrame(vals, columns)
df.show()
+-----------+----------+
|customer_id|product_id|
+-----------+----------+
| 370| 154|
| 370| 40|
| 370| 173|
| 41| 55|
| 41| 126|
| 41| 121|
| 41| 32323|
| 105| 22|
| 105| 55|
| 105| 133|
| 109| 22|
| 109| 55|
| 109| 133|
+-----------+----------+
# Create dataframe for FPGrowth model input
from pyspark.sql.functions import collect_list, col
from pyspark.sql import functions as F
from pyspark.sql.functions import *
transactions = df.groupBy("customer_id")\
.agg(F.collect_set("product_id"))
transactions.show()
+-----------+-----------------------+
|customer_id|collect_set(product_id)|
+-----------+-----------------------+
| 370| [154, 173, 40]|
| 41| [321, 121, 126, 55]|
| 105| [133, 22, 55]|
| 109| [133, 22, 55]|
+-----------+-----------------------+
# FPGrowth model
from pyspark.ml.fpm import FPGrowth
fpGrowth = FPGrowth(itemsCol="collect_set(product_id)", minSupport=0.5, minConfidence=0.6
model_working = fpGrowth.fit(transactions)
# Display frequent itemsets
model_working.freqItemsets.show()
+-------------+----+
| items|freq|
+-------------+----+
| [55]| 3|
| [22]| 2|
| [22, 55]| 2|
| [133]| 2|
| [133, 22]| 2|
|[133, 22, 55]| 2|
| [133, 55]| 2|
+-------------+----+
# Display generated association rules.
model_working.associationRules.show()
# transform examines the input items against all the association rules and summarise the
# consequents as prediction
model_working.transform(transactions).show()
+----------+----------+------------------+
|antecedent|consequent| confidence|
+----------+----------+------------------+
| [133]| [22]| 1.0|
| [133]| [55]| 1.0|
| [133, 55]| [22]| 1.0|
| [133, 22]| [55]| 1.0|
| [22]| [55]| 1.0|
| [22]| [133]| 1.0|
| [55]| [22]|0.6666666666666666|
| [55]| [133]|0.6666666666666666|
| [22, 55]| [133]| 1.0|
+----------+----------+------------------+
+-----------+-----------------------+----------+
|customer_id|collect_set(product_id)|prediction|
+-----------+-----------------------+----------+
| 370| [154, 173, 40]| []|
| 41| [321, 121, 126, 55]| [22, 133]|
| 105| [133, 22, 55]| []|
| 109| [133, 22, 55]| []|
+-----------+-----------------------+----------+