我正在尝试使用keras实现人脸识别。截至目前,我有四个数据集:person1,person2,person3和unknow [n]。
这四个数据集已经过预训练,所以我有四个权重:
person1.json, person1.h5
person2.json, person2.h5
person3.json, person3.h5
unknow.json, unknow.h5
我想问一下如何加载这四个权重,以及如何预测它们
here是我在互联网上找到的源代码。
# loop over the frames from the video stream
while True:
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
frame = vs.read()
frame = imutils.resize(frame, width=800)
height, width = frame.shape[:2]
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# detect faces in the grayayscale frame
rects = detector(gray_frame, 0)
# loopop over the face detections
for rect in rects:
faceAligned = fa.align(frame, gray_frame, rect)
faceAligned = cv2.cvtColor(faceAligned, cv2.COLOR_BGR2GRAY)
faceAligned = np.array(faceAligned)
faceAligned = faceAligned.astype('float32')
faceAligned /= 255.0
faceAligned= np.expand_dims([faceAligned], axis=4)
Y_pred = loaded_model.predict(faceAligned)
print(type(Y_pred))
print(Y_pred[0])
for index, value in enumerate(Y_pred[0]):
result = people[index] + ': ' + str(int(value * 100)) + '%'
if ( int(value * 100) > 95 ) :
# draw rect around face
(x,y,w,h) = face_utils.rect_to_bb(rect)
cv2.rectangle(frame, (x, y), (x+w, y+h), (0,0,255), 1)
# draw person name
result = np.argmax(Y_pred, axis=1)
cv2.putText(frame, people[result[0]], (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 1)
# show the frame
cv2.imshow("Frame", frame)
# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()
cv2.putText(frame, result, (10, 15 * (index + 1)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 1)